scispace - formally typeset
Search or ask a question
Author

Françoise Foury

Bio: Françoise Foury is an academic researcher from Université catholique de Louvain. The author has contributed to research in topics: Mitochondrial DNA & Mutant. The author has an hindex of 38, co-authored 63 publications receiving 9043 citations.


Papers
More filters
Journal ArticleDOI
25 Jul 2002-Nature
TL;DR: It is shown that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment, and less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal Growth in four of the tested conditions.
Abstract: Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

4,328 citations

Journal ArticleDOI
TL;DR: A deficient activity of the iron-sulphur (Fe-S) cluster-containing subunits of mitochondrial respiratory complexes I, II and III in the endomyocardial biopsy of two unrelated FRDA patients was found to be deficient.
Abstract: Friedreich ataxia (FRDA) is a common autosomal recessive degenerative disease (1/50,000 live births) characterized by a progressive gait and limb ataxia with lack of tendon reflexes in the legs, dysarthria and pyramidal weakness of the inferior limbs(1,2). Hypertrophic cardiomyopathy is observed in most FRDA patients. The gene associated with the disease has been mapped to chromosome 9q13 (ref. 3) and encodes a 210-amino-acid protein, frataxin. FRDA is caused primarily by a GAA repeat expansion within the first intron of the frataxin gene, which accounts for 98% of mutant alleles(4). The function of the protein is unknown, but an increased iron content has been reported in hearts of FRDA patients(5) and the mitochondria of yeast strains carrying a deleted frataxin gene counterpart (YFH1), suggesting that frataxin plays a major role in regulating mitochondrial iron transport(6.7). Here, we report a deficient activity of the iron-sulphur (Fe-S) cluster-containing subunits of mitochondrial respiratory complexes I, II and III in the endomyocardial biopsy of two unrelated FRDA patients. Aconitase, an iron-sulphur protein involved in iron homeostasis, was found to be deficient as well. Moreover, disruption of the YFH1 gene resulted in multiple Fe-S-dependent enzyme deficiencies in yeast. The deficiency of Fe-S-dependent enzyme activities in both FRDA patients and yeast should be related to mitochondrial iron accumulation, especially as Fe-S proteins are remarkably sensitive to free radicals(8). Mutated frataxin triggers aconitase and mitochondrial Fe-S respiratory enzyme deficiency in FRDA, which should therefore be regarded as a mitochondrial disorder.

963 citations

Journal ArticleDOI
TL;DR: It is reported that the mtDNA sequence of the strain used for nuclear genome sequencing assembles into a circular map of 85 779 bp which includes 10 kb of new sequence, and a list of seven small hypothetical open reading frames (ORFs) is given.

418 citations

Journal ArticleDOI
11 Aug 1997-Gene
TL;DR: A sequence similarity search has been carried out against the complete Saccharomyces cerevisiae genome to identify the yeast homologues of human disease-associated genes, and functional analogies can often be established between the human and yeast genes.

207 citations

Journal ArticleDOI
TL;DR: The MIP1 gene encodes the catalytic subunit of the replicative mitochondrial DNA polymerase, which exhibits sequence similarities with both eukaryotic nuclear DNA polymerases and reverse transcriptases.

196 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work states that rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize the view of biology and disease pathologies in the twenty-first century.
Abstract: A key aim of postgenomic biomedical research is to systematically catalogue all molecules and their interactions within a living cell. There is a clear need to understand how these molecules and the interactions between them determine the function of this enormously complex machinery, both in isolation and when surrounded by other cells. Rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize our view of biology and disease pathologies in the twenty-first century.

7,475 citations

Journal ArticleDOI
TL;DR: These mutants—the ‘Keio collection’—provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome‐wide testing of mutational effects in a common strain background, E. coli K‐12 BW25113.
Abstract: We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants-the 'Keio collection'-provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).

7,428 citations

Journal ArticleDOI
TL;DR: The relative importance of the common main-chain and side-chain interactions in determining the propensities of proteins to aggregate is discussed and some of the evidence that the oligomeric fibril precursors are the primary origins of pathological behavior is described.
Abstract: Peptides or proteins convert under some conditions from their soluble forms into highly ordered fibrillar aggregates. Such transitions can give rise to pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. In this review, we identify the diseases known to be associated with formation of fibrillar aggregates and the specific peptides and proteins involved in each case. We describe, in addition, that living organisms can take advantage of the inherent ability of proteins to form such structures to generate novel and diverse biological functions. We review recent advances toward the elucidation of the structures of amyloid fibrils and the mechanisms of their formation at a molecular level. Finally, we discuss the relative importance of the common main-chain and side-chain interactions in determining the propensities of proteins to aggregate and describe some of the evidence that the oligomeric fibril precursors are the primary origins of pathological behavior.

5,897 citations

Journal ArticleDOI
01 Aug 2003-Science
TL;DR: Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels, and insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
Abstract: Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.

5,227 citations

Journal ArticleDOI
TL;DR: A general framework for `soft' thresholding that assigns a connection weight to each gene pair is described and several node connectivity measures are introduced and provided empirical evidence that they can be important for predicting the biological significance of a gene.
Abstract: Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An important question is whether it is biologically meaningful to encode gene co-expression using binary information (connected=1, unconnected=0). We describe a general framework for ;soft' thresholding that assigns a connection weight to each gene pair. This leads us to define the notion of a weighted gene co-expression network. For soft thresholding we propose several adjacency functions that convert the co-expression measure to a connection weight. For determining the parameters of the adjacency function, we propose a biologically motivated criterion (referred to as the scale-free topology criterion). We generalize the following important network concepts to the case of weighted networks. First, we introduce several node connectivity measures and provide empirical evidence that they can be important for predicting the biological significance of a gene. Second, we provide theoretical and empirical evidence that the ;weighted' topological overlap measure (used to define gene modules) leads to more cohesive modules than its ;unweighted' counterpart. Third, we generalize the clustering coefficient to weighted networks. Unlike the unweighted clustering coefficient, the weighted clustering coefficient is not inversely related to the connectivity. We provide a model that shows how an inverse relationship between clustering coefficient and connectivity arises from hard thresholding. We apply our methods to simulated data, a cancer microarray data set, and a yeast microarray data set.

4,448 citations