scispace - formally typeset
Search or ask a question
Author

Frank Baas

Bio: Frank Baas is an academic researcher from Leiden University Medical Center. The author has contributed to research in topics: Gene & Complement system. The author has an hindex of 93, co-authored 434 publications receiving 31187 citations. Previous affiliations of Frank Baas include Flanders Institute for Biotechnology & Academic Medical Center.


Papers
More filters
Journal Article
TL;DR: In this paper, the authors identified three new homologues of MRP1, the gene encoding the multidrug resistanceassociated protein, and cMOAT (or MRP2 ), the canalicular multispecific organic anion transporter gene.
Abstract: By screening databases of human expressed sequence tags, we have identified three new homologues of MRP1 , the gene encoding the multidrug resistance-associated protein, and cMOAT (or MRP2 ), the canalicular multispecific organic anion transporter gene. We call these new genes MRP3, MRP4 , and MRP5. MRP3 , like cMOAT , is mainly expressed in the liver. MRP4 is expressed only at very low levels in a few tissues, and MRP5 , like MRP1 , is expressed in almost every tissue tested. To assess a possible role of these new MRP homologues in multidrug or cisplatin resistance, a large set of resistant cell lines was examined for the (over)expression of MRP1, cMOAT, MRP3, MRP4 , and MRP5 . We find that even in cells selected for a low level of resistance, several MRP -related genes can be up-regulated simultaneously. However, MRP4 is not overexpressed in any of the cell lines we analyzed; MRP3 and MRP5 are only overexpressed in a few cell lines, and the RNA levels do not seem to correlate with resistance to either doxorubicin or cisplatin. cMOAT is substantially overexpressed in several cell lines, and cMOAT RNA levels correlate with cisplatin but not doxorubicin resistance in a subset of resistant cell lines. Our results emphasize the need for gene-specific blocks in gene expression to define which transporter contributes to resistance in each resistant cell line.

831 citations

Journal ArticleDOI
27 Mar 2015-Science
TL;DR: A moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS found several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene.
Abstract: Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.

813 citations

Journal ArticleDOI
16 Feb 2001-Science
TL;DR: The Human Transcriptome Map (HPM) as mentioned in this paper is a tool to search for genes that are overexpressed or silenced in cancer using the SAGE serial analysis of gene expression.
Abstract: The chromosomal position of human genes is rapidly being established. We integrated these mapping data with genome-wide messenger RNA expression profiles as provided by SAGE (serial analysis of gene expression). Over 2.45 million SAGE transcript tags, including 160,000 tags of neuroblastomas, are presently known for 12 tissue types. We developed algorithms to assign these tags to UniGene clusters and their chromosomal position. The resulting Human Transcriptome Map generates gene expression profiles for any chromosomal region in 12 normal and pathologic tissue types. The map reveals a clustering of highly expressed genes to specific chromosomal regions. It provides a tool to search for genes that are overexpressed or silenced in cancer.

770 citations

Journal ArticleDOI
TL;DR: It is concluded that MRP is a plasma membrane drug-efflux pump that confers drug resistance in human lung carcinoma cells by generating a subline stably transfected with an expression vector containing MRP cDNA.
Abstract: The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an expression vector containing MRP cDNA. MRP-overexpressing SW-1573 cells are resistant to doxorubicin, daunorubicin, vincristine, VP-16, colchicine, and rhodamine 123, but not to 4'-(9-acridinylamino)methanesulfon-m-anisidide or taxol. The intracellular accumulation of drug (daunorubicin, vincristine, and VP-16) is decreased and the efflux of drug (daunorubicin) is increased in the transfectant. The decreased accumulation of daunorubicin is abolished by permeabilization of the plasma membrane with digitonin, showing that MRP can lower the intracellular daunorubicin level against a concentration gradient. Anti-MRP antisera predominantly stain the plasma membrane of MRP-overexpressing cells. We conclude that MRP is a plasma membrane drug-efflux pump.

699 citations

Journal ArticleDOI
TL;DR: It is shown that cMOAT causes transport of the organic anions S-(2,4-dinitrophenyl)-glutathione, the glutathione conjugate of ethacrynic acid, and S-(PGA1)-gluten, a substrate not shown to be transported by organic anion transporters previously.
Abstract: Apert syndrome, associated with fibroblast growth factor receptor (FGFR) 2 mutations, is characterized by premature fusion of cranial sutures. We analyzed proliferation and differentiation of calvaria cells derived from Apert infants and fetuses with FGFR-2 mutations. Histological analysis revealed premature ossification, increased extent of subperiosteal bone formation, and alkaline phosphatase- positive preosteoblastic cells in Apert fetal calvaria compared with age-matched controls. Preosteoblastic calvaria cells isolated from Apert infants and fetuses showed normal cell growth in basal conditions or in response to exogenous FGF-2. In contrast, the number of alkaline phosphatase- positive calvaria cells was fourfold higher than normal in mutant fetal calvaria cells with the most frequent Apert FGFR-2 mutation (Ser252Trp), suggesting increased maturation rate of cells in the osteoblastic lineage. Biochemical and Northern blot analyses also showed that the expression of alkaline phosphatase and type 1 collagen were 2-10-fold greater than normal in mutant fetal calvaria cells. The in vitro production of mineralized matrix formed by immortalized mutant fetal calvaria cells cultured in aggregates was also increased markedly compared with control immortalized fetal calvaria cells. The results show that Apert FGFR-2 mutations lead to an increase in the number of precursor cells that enter the osteogenic pathway, leading ultimately to increased subperiosteal bone matrix formation and premature calvaria ossification during fetal development, which establishes a connection between the altered genotype and cellular phenotype in Apert syndromic craniosynostosis.

638 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations

Journal ArticleDOI
TL;DR: The ability to predict and circumvent drug resistance is likely to improve chemotherapy, and it has become apparent that resistance exists against every effective drug, even the authors' newest agents.
Abstract: Chemotherapeutics are the most effective treatment for metastatic tumours. However, the ability of cancer cells to become simultaneously resistant to different drugs--a trait known as multidrug resistance--remains a significant impediment to successful chemotherapy. Three decades of multidrug-resistance research have identified a myriad of ways in which cancer cells can elude chemotherapy, and it has become apparent that resistance exists against every effective drug, even our newest agents. Therefore, the ability to predict and circumvent drug resistance is likely to improve chemotherapy.

5,105 citations