scispace - formally typeset
Search or ask a question
Author

Frank Baganz

Bio: Frank Baganz is an academic researcher from University of Manchester. The author has contributed to research in topics: Saccharomyces cerevisiae & Gene. The author has an hindex of 4, co-authored 4 publications receiving 1268 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The genome sequence of the yeast Saccharomyces cerevisiae has provided the first complete inventory of the working parts of a eukaryotic cell, and systematic and comprehensive approaches to the elucidation of yeast gene function are discussed.

1,107 citations

Journal ArticleDOI
01 Dec 1997-Yeast
TL;DR: It is demonstrated that HO is a selectively neutral site for gene replacement, but there is a significant marker effect associated with HIS3 which is dependent on the physiological conditions used for the competition experiments, and nutritional markers should not be used to generate deletion mutants for quantitative analysis of gene function in yeast.
Abstract: The complete yeast sequence contains a large proportion of genes whose biological function is completely unknown. One approach to elucidating the function of these novel genes is by quantitative methods that exploit the concepts of metabolic control analysis. An important first step in such an analysis is to determine the effects of deleting individual genes on the growth rate (or fitness) of Saccharomyces cerevisiae. Since the specific growth-rate effects of most genes are likely to be small, they are most readily determined by competition against a standard strain in chemostat cultures where the true steady state demanded by metabolic control analysis may be achieved. We have constructed two different standard strains in which the HO gene is replaced by either HIS3 or kanMX. We demonstrate that HO is a selectively neutral site for gene replacement. However, there is a significant marker effect associated with HIS3 which, moreover, is dependent on the physiological conditions used for the competition experiments. In contrast, the kanMX marker exhibited only a small effect on specific growth rate (< or = +/- 4%). These data suggest that nutritional markers should not be used to generate deletion mutants for the quantitative analysis of gene function in yeast but that kanMX replacements may be used, with confidence, for such studies.

131 citations

Journal ArticleDOI
01 Nov 1998-Yeast
TL;DR: It is shown that both densitometry and GeneScan™ analysis can be used with similar accuracy and reproducibility to determine the proportions of (at least) two strains simultaneously, in the range 10–90% of the total cell population.
Abstract: One possible route to the evaluation of gene function is a quantitative approach based on the concepts of metabolic control analysis (MCA). An important first step in such an analysis is to determine the effect of deleting individual genes on the growth rate (or fitness) of S. cerevisiae. Since the specific growth-rate effects of most genes are likely to be small, we employed competition experiments in chemostat culture to measure the proportion of deletion mutants relative to that of a standard strain by using a quantitative PCR method. In this paper, we show that both densitometry and GeneScan analysis can be used with similar accuracy and reproducibility to determine the proportions of (at least) two strains simultaneously, in the range 10-90% of the total cell population. Furthermore, we report on a model competition experiment between two diploid nuclear petite mutants, homozygous for deletions in the cox5a or pet191 genes, and the standard strain (ho::kanMX4/ho::kanMX4) in chemostat cultures under six different physiological conditions. The results indicate that competition experiments is continuous culture are a suitable method to distinguish quantitatively between deletion mutants that qualitatively exhibit the same phenotype.

60 citations

Book ChapterDOI
TL;DR: The chapter explains the basic concepts and theorems of MCA with respect to its implications for the elucidation of the functions of novel genes and uses a simple kinetic model that mimics functional analysis experiments.
Abstract: Publisher Summary This chapter discusses metabolic control analysis (MCA) as a tool in the elucidation of the function of novel genes. MCA is an attempt to understand quantitatively the global behavior of complex systems on the basis of the local properties of the components—the enzymes. In the past decade, substantial progress has been made to extend the MCA theory to more and more complex systems, such as large systems, group transfer pathways, channeling, and many more. The chapter explains the basic concepts and theorems of MCA because they may be applied to the functional analysis of novel genes. It explains MCA with respect to its implications for the elucidation of the functions of novel genes. All the experiments demonstrated in the chapter are done in silico using a simple kinetic model that mimics functional analysis experiments. A simple example is used in the chapter to illustrate the principles of MCA: the regulation of phosphofructokinase (PFK) by fructose, 2,6-bisphosphate (F26bP). The definitions and concepts of metabolic control analysis are also discussed in the chapter.

54 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s), which should be widely useful, especially in genome analysis of E. coli and other bacteria.
Abstract: We have developed a simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s). In this procedure, recombination requires the phage lambda Red recombinase, which is synthesized under the control of an inducible promoter on an easily curable, low copy number plasmid. To demonstrate the utility of this approach, we generated PCR products by using primers with 36- to 50-nt extensions that are homologous to regions adjacent to the gene to be inactivated and template plasmids carrying antibiotic resistance genes that are flanked by FRT (FLP recognition target) sites. By using the respective PCR products, we made 13 different disruptions of chromosomal genes. Mutants of the arcB, cyaA, lacZYA, ompR-envZ, phnR, pstB, pstCA, pstS, pstSCAB-phoU, recA, and torSTRCAD genes or operons were isolated as antibiotic-resistant colonies after the introduction into bacteria carrying a Red expression plasmid of synthetic (PCR-generated) DNA. The resistance genes were then eliminated by using a helper plasmid encoding the FLP recombinase which is also easily curable. This procedure should be widely useful, especially in genome analysis of E. coli and other bacteria because the procedure can be done in wild-type cells.

14,389 citations

Journal ArticleDOI
06 Aug 1999-Science
TL;DR: A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome), finding that 17 percent were essential for viability in rich medium.
Abstract: The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium.

4,051 citations

Journal ArticleDOI
Oliver Fiehn1
TL;DR: In this review, the differences among metabolite target analysis, metabolite profiling, and metabolic fingerprinting are clarified, and terms are defined.
Abstract: Metabolites are the end products of cellular regulatory processes, and their levels can be regarded as the ultimate response of biological systems to genetic or environmental changes. In parallel to the terms ‘transcriptome’ and ‘proteome’, the set of metabolites synthesized by a biological system constitute its ‘metabolome’. Yet, unlike other functional genomics approaches, the unbiased simultaneous identification and quantification of plant metabolomes has been largely neglected. Until recently, most analyses were restricted to profiling selected classes of compounds, or to fingerprinting metabolic changes without sufficient analytical resolution to determine metabolite levels and identities individually. As a prerequisite for metabolomic analysis, careful consideration of the methods employed for tissue extraction, sample preparation, data acquisition, and data mining must be taken. In this review, the differences among metabolite target analysis, metabolite profiling, and metabolic fingerprinting are clarified, and terms are defined. Current approaches are examined, and potential applications are summarized with a special emphasis on data mining and mathematical modelling of metabolism.

3,547 citations

Journal ArticleDOI
01 Oct 1999-Yeast
TL;DR: Three new dominant drug resistance cassettes have unique antibiotic resistance phenotypes and do not affect growth when inserted into the ho locus, which make the cassettes ideally suited for creating S. cerevisiae strains with multiple mutations within a single strain.
Abstract: Disruption-deletion cassettes are powerful tools used to study gene function in many organisms, including Saccharomyces cerevisiae. Perhaps the most widely useful of these are the heterologous dominant drug resistance cassettes, which use antibiotic resistance genes from bacteria and fungi as selectable markers. We have created three new dominant drug resistance cassettes by replacing the kanamycin resistance (kan(r)) open reading frame from the kanMX3 and kanMX4 disruption-deletion cassettes (Wach et al., 1994) with open reading frames conferring resistance to the antibiotics hygromycin B (hph), nourseothricin (nat) and bialaphos (pat). The new cassettes, pAG25 (natMX4), pAG29 (patMX4), pAG31 (patMX3), pAG32 (hphMX4), pAG34 (hphMX3) and pAG35 (natMX3), are cloned into pFA6, and so are in all other respects identical to pFA6-kanMX3 and pFA6-kanMX4. Most tools and techniques used with the kanMX plasmids can also be used with the hph, nat and patMX containing plasmids. These new heterologous dominant drug resistance cassettes have unique antibiotic resistance phenotypes and do not affect growth when inserted into the ho locus. These attributes make the cassettes ideally suited for creating S. cerevisiae strains with multiple mutations within a single strain.

1,866 citations

Journal ArticleDOI
TL;DR: In this postgenomic era, there is a specific need to assign function to orphan genes in order to validate potential targets for drug therapy and to discover new biomarkers of disease.

1,236 citations