scispace - formally typeset
Search or ask a question
Author

Frank Bertoldi

Other affiliations: ASTRON, Ghent University, INAF  ...read more
Bio: Frank Bertoldi is an academic researcher from University of Bonn. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 96, co-authored 384 publications receiving 34499 citations. Previous affiliations of Frank Bertoldi include ASTRON & Ghent University.
Topics: Galaxy, Star formation, Redshift, Quasar, Luminosity


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Jeans mass and magnetic critical mass for the clumps in these clouds were determined, and it was shown that these clumps are magnetically supercritical, i.e., they are not supported by magnetic fields alone.
Abstract: A substantial fraction of the mass of a giant molecular cloud (GMC) in the Galaxy is confined to clumps which occupy a small fraction of the volume of the cloud. A majority of the clumps in several well-studied GMCs (Ophiuchus, Orion G, Rosette, Cepheus OB3) are not in gravitational virial equilibrium, but instead are confined by the pressure of the surrounding medium. These clumps thus violate one of 'Larson's (1981) laws'. Generalizing the standard virial analysis for spherical clouds to spheroidal clouds, we determine the Jeans mass and the magnetic critical mass for the clumps in these clouds. The Alfven Mach number, which is proportional to the internal velocity dispersion of the clumps divided by the Alfven velocity, is estimated to be of order unity for all the clumps. The more massive clumps, which are in gravitational virial equilibrium, are too massive to be supported by magnetic fields alone (i.e., they are magnetically supercritical). Internally generated turbulence must play a key role in supporting these clumps.

884 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported sub-arcsecond resolution IRAM PdBI millimeter CO interferometry of four z~2 submillimeter galaxies (SMGs), and sensitive CO (3-2) flux limits toward three z ~2 UV-/optically selected star forming galaxies.
Abstract: We report sub-arcsecond resolution IRAM PdBI millimeter CO interferometry of four z~2 submillimeter galaxies (SMGs), and sensitive CO (3-2) flux limits toward three z~2 UV-/optically selected star forming galaxies. The new data reveal for the first time spatially resolved CO gas kinematics in the observed SMGs. Two of the SMGs show double or multiple morphologies, with complex, disturbed gas motions. The other two SMGs exhibit CO velocity gradients of ~500 km/s across 0.2 arcsec (1.6 kpc) diameter regions, suggesting that the star forming gas is in compact, rotating disks. Our data provide compelling evidence that these SMGs represent extreme, short-lived 'maximum' star forming events in highly dissipative mergers of gas rich galaxies. The resulting high mass surface and volume densities of SMGs are similar to those of compact quiescent galaxies in the same redshift range, and much higher than those in local spheroids. From the ratio of the comoving volume densities of SMGs and quiescent galaxies in the same mass and redshift ranges, and from the comparison of gas exhaustion time scales and stellar ages, we estimate that the SMG phase duration is about 100 Myrs. Our analysis of SMGs and optically/UV selected high redshift star forming galaxies supports a 'universal' Chabrier IMF as being valid over the star forming history of these galaxies. We find that the 12CO luminosity to total gas mass conversion factors at z~2-3 are probably similar to those assumed at z~0. The implied gas fractions in our sample galaxies range from 20 to 50%.

813 citations

Journal ArticleDOI
10 Jun 2008
TL;DR: In this article, the authors reported subarcsecond resolution IRAM PdBI millimeter CO interferometry of four z ~ 2 submillimeter galaxies (SMGs), and sensitive CO(3-2) flux limits toward three z ≥ 2 UV/optically selected star-forming galaxies.
Abstract: We report subarcsecond resolution IRAM PdBI millimeter CO interferometry of four z ~ 2 submillimeter galaxies (SMGs), and sensitive CO(3-2) flux limits toward three z ~ 2 UV/optically selected star-forming galaxies. The new data reveal for the first time spatially resolved CO gas kinematics in the observed SMGs. Two of the SMGs show double or multiple morphologies, with complex, disturbed gas motions. The other two SMGs exhibit CO velocity gradients of ~500 km s^−1 across ≤0.2" (1.6 kpc) diameter regions, suggesting that the star-forming gas is in compact, rotating disks. Our data provide compelling evidence that these SMGs represent extreme, short-lived "maximum" star-forming events in highly dissipative mergers of gas-rich galaxies. The resulting high-mass surface and volume densities of SMGs are similar to those of compact quiescent galaxies in the same redshift range and much higher than those in local spheroids. From the ratio of the comoving volume densities of SMGs and quiescent galaxies in the same mass and redshift ranges, and from the comparison of gas exhaustion timescales and stellar ages, we estimate that the SMG phase duration is about 100 Myr. Our analysis of SMGs and optically/UV selected high-redshift star-forming galaxies supports a "universal" Chabrier IMF as being valid over the star-forming history of these galaxies. We find that the ^(12)CO luminosity to total gas mass conversion factors at z ~ 2-3 are probably similar to those assumed at z ~ 0. The implied gas fractions in our sample galaxies range from 20% to 50%.

778 citations

Journal ArticleDOI
TL;DR: In this paper, a multiline UV pumping model was proposed to compare the effect of self-shielding on the overall fluorescent efficiency of the photodissociation front, including the effects of line overlap.
Abstract: The structure of stationary photodissociation fronts is revisited. H_2 self- shielding is discussed, including the effects of line overlap. We find that line overlap is important for N(H_2) > 10^{20} cm^{-2}. We compute multiline UV pumping models, and compare these with simple analytic approximations for the effects of self-shielding. The overall fluorescent efficiency of the photodissociation front is obtained for different ratios of chi/n_H (where chi characterizes the intensity of the incident UV) and different dust extinction laws. The dust optical depth tau_{pdr} to the point where 50% of the H is molecular is found to be a simple function of a dimensionless quantity phi_0 depending on chi/n_H, the rate coefficient for H_2 formation on grains, and the UV dust opacity. The fluorescent efficiency of the PDR also depends primarily on phi_0 for chi 10^4K, but shows some sensitivity to the v-J distribution of newly-formed H_2. The 1-0S(1)/2-1S(1) and 2-1S(1)/6-4Q(1) intensity ratios, the ortho/para ratio, and the rotational temperature in the $v$=1 and $v$=2 levels are computed as functions of the temperature and density, for different values of chi and n_H. We apply our models to the reflection nebula NGC 2023. We are best able to reproduce the observations with models having chi=5000, n_H=10^5 cm^{-3}.

766 citations

Journal ArticleDOI
TL;DR: In this article, the structure of dense starless and star-forming cores with the particular goal to identify and understand evolutionary trends in core properties, and explore the nature of Very Low Luminosity Objects (<0.1 L ⊙ ; VeLLOs).
Abstract: Aims. To study the structure of nearby (<500 pc) dense starless and star-forming cores with the particular goal to identify and understand evolutionary trends in core properties, and to explore the nature of Very Low Luminosity Objects (<0.1 L ⊙ ; VeLLOs). Methods. Using the MAMBO bolometer array, we create maps unusually sensitive to faint (few mJy per beam) extended (≈5') thermal dust continuum emission at 1.2 mm wavelength. Complementary information on embedded stars is obtained from Spitzer, IRAS, and 2MASS. Results. Our maps are very rich in structure, and we characterize extended emission features ("subcores") and compact intensity peaks in our data separately to pay attention to this complexity. We derive, e.g., sizes, masses, and aspect ratios for the subcores, as well as column densities and related properties for the peaks. Combination with archival infrared data then enables the derivation of bolometric luminosities and temperatures, as well as envelope masses, for the young embedded stars. Conclusions. Starless and star-forming cores occupy the same parameter space in many core properties; a picture of dense core evolution in which any dense core begins to actively form stars once it exceeds some fixed limit in, e.g., mass, density, or both, is inconsistent with our data. A concept of necessary conditions for star formation appears to provide a better description: dense cores fulfilling certain conditions can form stars, but they do not need to, respectively have not done so yet. Comparison of various evolutionary indicators for young stellar objects in our sample (e.g., bolometric temperatures) reveals inconsistencies between some of them, possibly suggesting a revision of some of these indicators. Finally, we challenge the notion that VeLLOs form in cores not expected to actively form stars, and we present a first systematic study revealing evidence for structural differences between starless and candidate VeLLO cores.

673 citations


Cited by
More filters
Journal ArticleDOI
01 Dec 2010
TL;DR: The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 14 December 2009 and completed its first full coverage of the sky on July 17 as discussed by the authors.
Abstract: The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

7,182 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Abstract: Over the past two decades, an avalanche of data from multiwavelength imaging and spectroscopic surveys has revolutionized our view of galaxy formation and evolution. Here we review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch. A consistent picture is emerging, whereby the star-formation rate density peaked approximately 3.5 Gyr after the Big Bang, at z~1.9, and declined exponentially at later times, with an e-folding timescale of 3.9 Gyr. Half of the stellar mass observed today was formed before a redshift z = 1.3. About 25% formed before the peak of the cosmic star-formation rate density, and another 25% formed after z = 0.7. Less than ~1% of today's stars formed during the epoch of reionization. Under the assumption of a universal initial mass function, the global stellar mass density inferred at any epoch matches reasonably well the time integral of all the preceding star-formation activity. The comoving rates of star formation and central black hole accretion follow a similar rise and fall, offering evidence for co-evolution of black holes and their host galaxies. The rise of the mean metallicity of the Universe to about 0.001 solar by z = 6, one Gyr after the Big Bang, appears to have been accompanied by the production of fewer than ten hydrogen Lyman-continuum photons per baryon, a rather tight budget for cosmological reionization.

3,104 citations

Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe version 90 (C90) of the code, paying particular attention to changes in the atomic database and numerical methods that have affected predictions since the last publicly available version, C84.
Abstract: CLOUDY is a large‐scale spectral synthesis code designed to simulate fully physical conditions within an astronomical plasma and then predict the emitted spectrum. Here we describe version 90 (C90) of the code, paying particular attention to changes in the atomic database and numerical methods that have affected predictions since the last publicly available version, C84. The computational methods and uncertainties are outlined together with the direction future development will take. The code is freely available and is widely used in the analysis and interpretation of emission‐line spectra. Web access to the Fortran source for CLOUDY, its documentation Hazy, and an independent electronic form of the atomic database is also described.

2,571 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations