scispace - formally typeset
Search or ask a question
Author

Frank Buquicchio

Bio: Frank Buquicchio is an academic researcher from Stanford University. The author has contributed to research in topics: Biology & Mitochondrial DNA. The author has an hindex of 3, co-authored 4 publications receiving 133 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the presence and polarity of the overhang structure is a critical determinant of double-strand break repair pathway choice and homologous recombination is required for repairing lesions using double-Stranded, but not single-stranded DNA as a template.
Abstract: The CRISPR-Cas9 system provides a versatile toolkit for genome engineering that can introduce various DNA lesions at specific genomic locations. However, a better understanding of the nature of these lesions and the repair pathways engaged is critical to realizing the full potential of this technology. Here we characterize the different lesions arising from each Cas9 variant and the resulting repair pathway engagement. We demonstrate that the presence and polarity of the overhang structure is a critical determinant of double-strand break repair pathway choice. Similarly, single nicks deriving from different Cas9 variants differentially activate repair: D10A but not N863A-induced nicks are repaired by homologous recombination. Finally, we demonstrate that homologous recombination is required for repairing lesions using double-stranded, but not single-stranded DNA as a template. This detailed characterization of repair pathway choice in response to CRISPR-Cas9 enables a more deterministic approach for designing research and therapeutic genome engineering strategies.

160 citations

Journal ArticleDOI
17 Jun 2020
TL;DR: It is shown that chromosomal translocations can be reduced when using different nuclease combinations, or by the presence of a homologous single stranded oligo donor for multiplexed genome editing.
Abstract: Multiplexed genome editing with DNA endonucleases has broad application, including for cellular therapies, but chromosomal translocations, natural byproducts of inducing simultaneous genomic breaks, have not been explored in detail Here we apply various CRISPR-Cas nucleases to edit the T cell receptor alpha and beta 2 microglobulin genes in human primary T cells and comprehensively evaluate the frequency and stability of the resulting translocations A thorough translocation frequency analysis using three orthogonal methods (droplet digital PCR, unidirectional sequencing, and metaphase fluorescence in situ hybridization) yielded comparable results and an overall translocation rate of ∼7% between two simultaneous CRISPR-Cas9 induced edits In addition, we show that chromosomal translocations can be reduced when using different nuclease combinations, or by the presence of a homologous single stranded oligo donor for multiplexed genome editing Importantly, the two different approaches for translocation reduction are compatible with cell therapy applications

28 citations

Journal ArticleDOI
TL;DR: In this article , the authors show that the transcription factor Runx3 is a critical regulator of tissue residency in CD8+ T cell tissue residency, but its expression is repressed in CD4+ T cells.
Abstract: Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-β-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-β-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-β-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.

26 citations

Journal ArticleDOI
TL;DR: The authors developed a one-size-fits-all editing strategy for effective T-cell correction, selection, and depletion and investigated the therapeutic potential of Tcell and HSPC therapies in the HIGM1 mouse model.
Abstract: Precise correction of the CD40LG gene in T cells and hematopoietic stem/progenitor cells (HSPC) holds promise for treating X-linked hyper-IgM Syndrome (HIGM1), but its actual therapeutic potential remains elusive. Here, we developed a one-size-fits-all editing strategy for effective T-cell correction, selection, and depletion and investigated the therapeutic potential of T-cell and HSPC therapies in the HIGM1 mouse model. Edited patients' derived CD4 T cells restored physiologically regulated CD40L expression and contact-dependent B-cell helper function. Adoptive transfer of wild-type T cells into conditioned HIGM1 mice rescued antigen-specific IgG responses and protected mice from a disease-relevant pathogen. We then obtained ~ 25% CD40LG editing in long-term repopulating human HSPC. Transplanting such proportion of wild-type HSPC in HIGM1 mice rescued immune functions similarly to T-cell therapy. Overall, our findings suggest that autologous edited T cells can provide immediate and substantial benefits to HIGM1 patients and position T-cell ahead of HSPC gene therapy because of easier translation, lower safety concerns and potentially comparable clinical benefits.

22 citations

Journal ArticleDOI
TL;DR: A review of recent developments in CRISPR-Cas9 technology and how they have been leveraged to discover and manipulate novel genetic regulators of the immune system can be found in this article.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In human cells, a humanized mouse model and non-human primates, CRISPR/Cas9 corrects the splicing defect in a gene associated with congenital blindness.
Abstract: Leber congenital amaurosis type 10 is a severe retinal dystrophy caused by mutations in the CEP290 gene1,2. We developed EDIT-101, a candidate genome-editing therapeutic, to remove the aberrant splice donor created by the IVS26 mutation in the CEP290 gene and restore normal CEP290 expression. Key to this therapeutic, we identified a pair of Staphylococcus aureus Cas9 guide RNAs that were highly active and specific to the human CEP290 target sequence. In vitro experiments in human cells and retinal explants demonstrated the molecular mechanism of action and nuclease specificity. Subretinal delivery of EDIT-101 in humanized CEP290 mice showed rapid and sustained CEP290 gene editing. A comparable surrogate non-human primate (NHP) vector also achieved productive editing of the NHP CEP290 gene at levels that met the target therapeutic threshold, and demonstrated the ability of CRISPR/Cas9 to edit somatic primate cells in vivo. These results support further development of EDIT-101 for LCA10 and additional CRISPR-based medicines for other inherited retinal disorders. In human cells, a humanized mouse model and non-human primates, CRISPR/Cas9 corrects the splicing defect in a gene associated with congenital blindness.

430 citations

Journal ArticleDOI
TL;DR: This work systematically study the influence of flanking DNA sequence on repair outcome by measuring the edits generated by >40,000 guide RNAs (gRNAs) in synthetic constructs and uncover sequence determinants of the mutations produced and use these to derive a predictor of Cas9 editing outcomes.
Abstract: The DNA mutation produced by cellular repair of a CRISPR-Cas9-generated double-strand break determines its phenotypic effect. It is known that the mutational outcomes are not random, but depend on DNA sequence at the targeted location. Here we systematically study the influence of flanking DNA sequence on repair outcome by measuring the edits generated by >40,000 guide RNAs (gRNAs) in synthetic constructs. We performed the experiments in a range of genetic backgrounds and using alternative CRISPR-Cas9 reagents. In total, we gathered data for >109 mutational outcomes. The majority of reproducible mutations are insertions of a single base, short deletions or longer microhomology-mediated deletions. Each gRNA has an individual cell-line-dependent bias toward particular outcomes. We uncover sequence determinants of the mutations produced and use these to derive a predictor of Cas9 editing outcomes. Improved understanding of sequence repair will allow better design of gene editing experiments.

355 citations

Journal ArticleDOI
TL;DR: This Review discusses the DNA repair pathways that underlie genome editing and recent improvements and strategies to yield desired genomic alterations in cells and organisms.
Abstract: Eukaryotic cells deploy overlapping repair pathways to resolve DNA damage. Advancements in genome editing take advantage of these pathways to produce permanent genetic changes. Despite recent improvements, genome editing can produce diverse outcomes that can introduce risks in clinical applications. Although homology-directed repair is attractive for its ability to encode precise edits, it is particularly difficult in human cells. Here we discuss the DNA repair pathways that underlie genome editing and strategies to favour various outcomes.

253 citations

Journal ArticleDOI
TL;DR: A Review informatively summaries the recent development and breakthroughs of CRISPR technology, with a focus on progresses, challenges and potential utility in plant science.
Abstract: The application of clustered regularly interspaced short palindromic repeats (CRISPR) for genetic manipulation has revolutionized life science over the past few years. CRISPR was first discovered as an adaptive immune system in bacteria and archaea, and then engineered to generate targeted DNA breaks in living cells and organisms. During the cellular DNA repair process, various DNA changes can be introduced. The diverse and expanding CRISPR toolbox allows programmable genome editing, epigenome editing and transcriptome regulation in plants. However, challenges in plant genome editing need to be fully appreciated and solutions explored. This Review intends to provide an informative summary of the latest developments and breakthroughs of CRISPR technology, with a focus on achievements and potential utility in plant biology. Ultimately, CRISPR will not only facilitate basic research, but also accelerate plant breeding and germplasm development. The application of CRISPR to improve germplasm is particularly important in the context of global climate change as well as in the face of current agricultural, environmental and ecological challenges.

250 citations

Journal ArticleDOI
TL;DR: It is shown that temperature modulates Cpf1 activity by controlling its ability to access genomic DNA, and temperature is identified as a modulator of activity and used to efficiently edit ectothermic vertebrate species.
Abstract: Cpf1 is a novel class of CRISPR-Cas DNA endonucleases, with a wide range of activity across different eukaryotic systems. Yet, the underlying determinants of this variability are poorly understood. Here, we demonstrate that LbCpf1, but not AsCpf1, ribonucleoprotein complexes allow efficient mutagenesis in zebrafish and Xenopus. We show that temperature modulates Cpf1 activity by controlling its ability to access genomic DNA. This effect is stronger on AsCpf1, explaining its lower efficiency in ectothermic organisms. We capitalize on this property to show that temporal control of the temperature allows post-translational modulation of Cpf1-mediated genome editing. Finally, we determine that LbCpf1 significantly increases homology-directed repair in zebrafish, improving current approaches for targeted DNA integration in the genome. Together, we provide a molecular understanding of Cpf1 activity in vivo and establish Cpf1 as an efficient and inducible genome engineering tool across ectothermic species.

215 citations