scispace - formally typeset
Search or ask a question
Author

Frank D. Yocca

Other affiliations: City University of New York
Bio: Frank D. Yocca is an academic researcher from Bristol-Myers Squibb. The author has contributed to research in topics: Agonist & Serotonin. The author has an hindex of 25, co-authored 54 publications receiving 2512 citations. Previous affiliations of Frank D. Yocca include City University of New York.
Topics: Agonist, Serotonin, Receptor, Buspirone, Quipazine


Papers
More filters
Journal ArticleDOI
TL;DR: These results, together with previous studies demonstrating partial agonist activity at serotonin 5-hydroxytryptamine (5-HT)1A receptors and antagonist activity at 5-HT2A receptors, support the identification of aripiprazole as a dopamine-serotonin system stabilizer.
Abstract: Aripiprazole is the first next-generation atypical antipsychotic with a mechanism of action that differs from currently marketed typical and atypical antipsychotics. Aripiprazole displays properties of an agonist and antagonist in animal models of dopaminergic hypoactivity and hyperactivity, respectively. This study examined the interactions of aripiprazole with a single population of human D2 receptors to clarify further its pharmacologic properties. In membranes prepared from Chinese hamster ovary cells that express recombinant D2L receptors, aripiprazole bound with high affinity to both the G protein-coupled and uncoupled states of receptors. Aripiprazole potently activated D2 receptor-mediated inhibition of cAMP accumulation. Partial receptor inactivation using the alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) significantly reduced the maximum effect of aripiprazole on inhibition of cAMP accumulation. This effect was seen with concentrations of EEDQ that did not alter the maximal inhibitory effect of dopamine. Consistent with the expected effects of a partial agonist, increasing concentrations of aripiprazole blocked the action of dopamine with maximal blockade equal to the agonist effect of aripiprazole alone. The efficacy of aripiprazole relative to that of dopamine varied from 25% in cells that lacked spare receptors for dopamine to 90% in cells with receptor reserve. These results, together with previous studies demonstrating partial agonist activity at serotonin 5-hydroxytryptamine (5-HT)1A receptors and antagonist activity at 5-HT2A receptors, support the identification of aripiprazole as a dopamine-serotonin system stabilizer. The receptor activity profile may underlie the unique activity of aripiprazole in animals and its antipsychotic activity in humans.

869 citations

Journal ArticleDOI
TL;DR: Results support a partial agonist activity for aripiprazole at 5-HT1A receptors in vitro and in vivo, and suggest important interactions with other 4-HT-receptor subtypes and this receptor activity profile may contribute to the antipsychotic activity of aripine in humans.
Abstract: Background Aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butoxy}-3,4-dihydro-2(1H)-quinolinone) is a novel antipsychotic with a mechanism of action that differs from current typical and atypical antipsychotics. Aripiprazole interacts with a range of receptors, including serotonin [5-hydroxytryptamine (5-HT)] and dopamine receptors.

139 citations

Journal ArticleDOI
TL;DR: These are the first data to indicate that at least two functional populations of NPY receptors exist in the SCN, distinguishable on the basis of pharmacology, each mediating a different physiological response to NPY application.
Abstract: Neuropeptide Y (NPY) has been implicated in the phase shifting of circadian rhythms in the hypothalamic suprachiasmatic nucleus (SCN). Using long-term, multiple-neuron recordings, we examined the direct effects and phase-shifting properties of NPY application in rat SCN slices in vitro (n = 453). Application of NPY and peptide YY to SCN slices at circadian time (CT) 7.5-8.5 produced concentration-dependent, reversible inhibition of cell firing and a subsequent significant phase advance. Several lines of evidence indicated that these two effects of NPY were mediated by different receptors. NPY-induced inhibition and phase shifting had different concentration-response relationships and very different phase-response relationships. NPY-induced phase advances, but not inhibition, were blocked by the GABAA antagonist bicuculline, suggesting that NPY-mediated modulation of GABA may be an underlying mechanism whereby NPY phase shifts the circadian clock. Application of the Y2 receptor agonists NPY 13-36 and (Cys2,8-aminooctanoic acid5,24,D-Cys27)-NPY advanced the peak of the circadian rhythm but did not inhibit cell firing. The Y1 and Y5 agonist [Leu31,Pro34]-NPY evoked a substantial inhibition of discharge but did not generate a phase shift. NPY-induced inhibition was not blocked by the specific Y1 antagonist BIBP-3226; the antagonist also had no effect on the timing of the peak of the circadian rhythm. Application of the Y5 agonist [D-Trp32]-NPY produced only direct neuronal inhibition. These are the first data to indicate that at least two functional populations of NPY receptors exist in the SCN, distinguishable on the basis of pharmacology, each mediating a different physiological response to NPY application.

114 citations

Journal Article
TL;DR: This was directly determined by examining the relationship between receptor occupancy and response at postsynaptic 5-HT1A receptors, in rat hippocampus, mediating the inhibition of forskolin-stimulated adenylyl cyclase activity, using the method of partial irreversible receptor inactivation.
Abstract: Previous studies have demonstrated the existence of a large receptor reserve for agonists at somatodendritic 5-hydroxytryptamine1A (5-HT1A) serotonin receptors in the raphe nuclei of the rat 5-HT1A agonists with anxiolytic properties (eg, buspirone, gepirone, and ipsapirone) display full intrinsic activity at these receptors but are partial agonists at postsynaptic 5-HT1A receptors, which suggests that the latter sites may be devoid of a receptor reserve In the present studies, this was directly determined by examining the relationship between receptor occupancy and response at postsynaptic 5-HT1A receptors, in rat hippocampus, mediating the inhibition of forskolin-stimulated adenylyl cyclase activity, using the method of partial irreversible receptor inactivation Rats were treated with vehicle or the irreversible antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), and 24 hr later hippocampi were removed for saturation analysis of [3H]8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) binding to 5-HT1A receptors or for adenylyl cyclase assays EEDQ (1 and 6 mg/kg) dose-dependently reduced the maximal number of [3H]8-OH-DPAT binding sites by 685 and 80%, respectively, without altering the Kd Concentration-response curves were generated for inhibition of forskolin-stimulated adenylyl cyclase activity by 5-HT and the selective 5-HT1A agonist N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT) EEDQ treatment dose-dependently reduced the maximal inhibitory effect of 5-HT [percentage of inhibition: control, 236; EEDQ (1 mg/kg), 134; EEDQ (6 mg/kg), 89], without altering either the slope factor (101) or the EC50 (964 nM) Analogous results were obtained with DP-5-CT [percentage of maximal inhibition: control, 241; EEDQ (1 mg/kg), 152; EEDQ (6 mg/kg), 107), again without changes in slope factor (089) or EC50 (99 nM) Analysis of double-reciprocal plots of equieffective concentrations of agonist, followed by calculation of fractional receptor occupancy, revealed a linear relationship between receptor occupancy and response for both 5-HT and DP-5-CT (ie, an absence of receptor reserve) The receptor specificity of the effect of EEDQ was demonstrated in two ways First, it was shown that pretreatment of rats with the selective 5-HT1A partial agonist BMY 7378 (10 mg/kg) before EEDQ afforded substantial protection (about 75%) against loss of the inhibitory effect of DP-5-CT on forskolin-stimulated adenylyl cyclase activity Second, EEDQ did not alter the inhibition of forskolin-stimulated adenylyl cyclase activity induced by the adenosine A1 receptor agonist phenylisopropyladenosine (PIA)(ABSTRACT TRUNCATED AT 400 WORDS)

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A number of 5-HT receptor ligands are currently utilised, or are in clinical development, to reduce the symptoms of CNS dysfunction and the functional responses attributed to each receptor in the brain are reviewed.

3,074 citations

Journal ArticleDOI
TL;DR: The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center.
Abstract: Hydrogenation is a core technology in chemical synthesis. High rates and selectivities are attainable only by the coordination of structurally well-designed catalysts and suitable reaction conditions. The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center. This catalyst system allows for the preferential reduction of a C=O function over a coexisting C=C linkage in a 2-propanol solution containing an alkaline base. The hydrogenation tolerates many substituents including F, Cl, Br, I, CF(3), OCH(3), OCH(2)C(6)H(5), COOCH(CH(3))(2), NO(2), NH(2), and NRCOR as well as various electron-rich and -deficient heterocycles. Furthermore, stereoselectivity is easily controlled by the electronic and steric properties (bulkiness and chirality) of the ligands as well as the reaction conditions. Diastereoselectivities observed in the catalytic hydrogenation of cyclic and acyclic ketones with the standard triphenylphosphane/ethylenediamine combination compare well with the best conventional hydride reductions. The use of appropriate chiral diphosphanes, particularly BINAP compounds, and chiral diamines results in rapid and productive asymmetric hydrogenation of a range of aromatic and heteroaromatic ketones and gives a consistently high enantioselectivity. Certain amino and alkoxy ketones can be used as substrates. Cyclic and acyclic alpha,beta-unsaturated ketones can be converted into chiral allyl alcohols of high enantiomeric purity. Hydrogenation of configurationally labile ketones allows for the dynamic kinetic discrimination of diastereomers, epimers, and enantiomers. This new method shows promise in the practical synthesis of a wide variety of chiral alcohols from achiral and chiral ketone substrates. Its versatility is manifested by the asymmetric synthesis of some biologically significant chiral compounds. The high rate and carbonyl selectivity are based on nonclassical metal-ligand bifunctional catalysis involving an 18-electron amino ruthenium hydride complex and a 16-electron amido ruthenium species.

1,630 citations

Journal ArticleDOI
TL;DR: It is postulate that a target-centric approach for first-in-class drugs, without consideration of an optimal MMOA, may contribute to the current high attrition rates and low productivity in pharmaceutical research and development.
Abstract: Preclinical strategies that are used to identify potential drug candidates include target-based screening, phenotypic screening, modification of natural substances and biologic-based approaches. To investigate whether some strategies have been more successful than others in the discovery of new drugs, we analysed the discovery strategies and the molecular mechanism of action (MMOA) for new molecular entities and new biologics that were approved by the US Food and Drug Administration between 1999 and 2008. Out of the 259 agents that were approved, 75 were first-in-class drugs with new MMOAs, and out of these, 50 (67%) were small molecules and 25 (33%) were biologics. The results also show that the contribution of phenotypic screening to the discovery of first-in-class small-molecule drugs exceeded that of target-based approaches — with 28 and 17 of these drugs coming from the two approaches, respectively — in an era in which the major focus was on target-based approaches. We postulate that a target-centric approach for first-in-class drugs, without consideration of an optimal MMOA, may contribute to the current high attrition rates and low productivity in pharmaceutical research and development.

1,552 citations

Journal ArticleDOI
TL;DR: This work has shown that the presence of gut microbiota regulates the set point for hypothalamic‐pituitary‐adrenal (HPA) axis activity, and the role intestinal microbiota may play in communication between these two systems is increasing.
Abstract: Background There is increasing interest in the gut-brain axis and the role intestinal microbiota may play in communication between these two systems. Acquisition of intestinal microbiota in the immediate postnatal period has a defining impact on the development and function of the gastrointestinal, immune, neuroendocrine and metabolic systems. For example, the presence of gut microbiota regulates the set point for hypothalamic-pituitary-adrenal (HPA) axis activity. Methods We investigated basal behavior of adult germ-free (GF), Swiss Webster female mice in the elevated plus maze (EPM) and compared this to conventionally reared specific pathogen free (SPF) mice. Additionally, we measured brain mRNA expression of genes implicated in anxiety and stress-reactivity. Key Results Germ-free mice, compared to SPF mice, exhibited basal behavior in the EPM that can be interpreted as anxiolytic. Altered GF behavior was accompanied by a decrease in the N-methyl-D-aspartate receptor subunit NR2B mRNA expression in the central amygdala, increased brain-derived neurotrophic factor expression and decreased serotonin receptor 1A (5HT1A) expression in the dentate granule layer of the hippocampus. Conclusions & Inferences We conclude that the presence or absence of conventional intestinal microbiota influences the development of behavior, and is accompanied by neurochemical changes in the brain.

1,129 citations

Journal ArticleDOI
TL;DR: Besides the heuristically interesting nature of functional selectivity, there is a clear impact on drug discovery, because this mechanism raises the possibility of selecting or designing novel ligands that differentially activate only a subset of functions of a single receptor, thereby optimizing therapeutic action.
Abstract: The concept of intrinsic efficacy has been enshrined in pharmacology for half of a century, yet recent data have revealed that many ligands can differentially activate signaling pathways mediated via a single G protein-coupled receptor in a manner that challenges the traditional definition of intrinsic efficacy. Some terms for this phenomenon include functional selectivity, agonist-directed trafficking, and biased agonism. At the extreme, functionally selective ligands may be both agonists and antagonists at different functions mediated by the same receptor. Data illustrating this phenomenon are presented from serotonin, opioid, dopamine, vasopressin, and adrenergic receptor systems. A variety of mechanisms may influence this apparently ubiquitous phenomenon. It may be initiated by differences in ligand-induced intermediate conformational states, as shown for the β 2 -adrenergic receptor. Subsequent mechanisms that may play a role include diversity of G proteins, scaffolding and signaling partners, and receptor oligomers. Clearly, expanded research is needed to elucidate the proximal (e.g., how functionally selective ligands cause conformational changes that initiate differential signaling), intermediate (mechanisms that translate conformation changes into differential signaling), and distal mechanisms (differential effects on target tissue or organism). Besides the heuristically interesting nature of functional selectivity, there is a clear impact on drug discovery, because this mechanism raises the possibility of selecting or designing novel ligands that differentially activate only a subset of functions of a single receptor, thereby optimizing therapeutic action. It also may be timely to revise classic concepts in quantitative pharmacology and relevant pharmacological conventions to incorporate these new concepts.

1,074 citations