scispace - formally typeset
Search or ask a question
Author

Frank Hill

Bio: Frank Hill is an academic researcher from Association of Universities for Research in Astronomy. The author has contributed to research in topics: Helioseismology & Convection zone. The author has an hindex of 37, co-authored 217 publications receiving 6296 citations. Previous affiliations of Frank Hill include University of Colorado Boulder & Kitt Peak National Observatory.


Papers
More filters
Journal ArticleDOI
31 May 1996-Science
TL;DR: Data from the GONG project and other helioseismic experiments reveal subtle errors in the models, such as an excess in sound speed just beneath the convection zone, which is plausible that the sound-speed differences reflect weak mixing in stellar interiors.
Abstract: Data from the Global Oscillation Network Group (GONG) project and other helioseismic experiments provide a test for models of stellar interiors and for the thermodynamic and radiative properties, on which the models depend, of matter under the extreme conditions found in the sun. Current models are in agreement with the helioseismic inferences, which suggests, for example, that the disagreement between the predicted and observed fluxes of neutrinos from the sun is not caused by errors in the models. However, the GONG data reveal subtle errors in the models, such as an excess in sound speed just beneath the convection zone. These discrepancies indicate effects that have so far not been correctly accounted for; for example, it is plausible that the sound-speed differences reflect weak mixing in stellar interiors, of potential importance to the overall evolution of stars and ultimately to estimates of the age of the galaxy based on stellar evolution calculations.

1,136 citations

Journal ArticleDOI
31 May 1996-Science
TL;DR: The GONG project acquires velocity images from a network of six identical instruments distributed around the world and has achieved a duty cycle of 89 percent and reduced the magnitude of spectral artifacts by a factor of 280 in power, compared with single-site observations.
Abstract: Helioseismology requires nearly continuous observations of the oscillations of the solar surface for long periods of time in order to obtain precise measurements of the sun's normal modes of oscillation. The GONG project acquires velocity images from a network of six identical instruments distributed around the world. The GONG network began full operation in October 1995. It has achieved a duty cycle of 89 percent and reduced the magnitude of spectral artifacts by a factor of 280 in power, compared with single-site observations. The instrumental noise is less than the observed solar background.

482 citations

Journal ArticleDOI
31 Mar 2000-Science
TL;DR: Changes in the rotation of the sun near the base of its convective envelope are detected, including a prominent variation with a period of 1.3 years at low latitudes, which may generate the 22-year cycles of magnetic activity.
Abstract: We have detected changes in the rotation of the sun near the base of its convective envelope, including a prominent variation with a period of 1.3 years at low latitudes. Such helioseismic probing of the deep solar interior has been enabled by nearly continuous observation of its oscillation modes with two complementary experiments. Inversion of the global-mode frequency splittings reveals that the largest temporal changes in the angular velocity Ω are of the order of 6 nanohertz and occur above and below the tachocline that separates the sun's differentially rotating convection zone (outer 30% by radius) from the nearly uniformly rotating deeper radiative interior beneath. Such changes are most pronounced near the equator and at high latitudes and are a substantial fraction of the average 30-nanohertz difference in Ω with radius across the tachocline at the equator. The results indicate variations of rotation close to the presumed site of the solar dynamo, which may generate the 22-year cycles of magnetic activity.

452 citations

Journal ArticleDOI
31 May 1996-Science
TL;DR: Frequency splittings derived from GONG observations confirm that the variation of rotation rate with latitude seen at the surface carries through much of the convection zone, at the base of which is an adjustment layer leading to latitudinally independent rotation at greater depths.
Abstract: Splitting of the sun's global oscillation frequencies by large-scale flows can be used to investigate how rotation varies with radius and latitude within the solar interior. The nearly uninterrupted observations by the Global Oscillation Network Group (GONG) yield oscillation power spectra with high duty cycles and high signal-to-noise ratios. Frequency splittings derived from GONG observations confirm that the variation of rotation rate with latitude seen at the surface carries through much of the convection zone, at the base of which is an adjustment layer leading to latitudinally independent rotation at greater depths. A distinctive shear layer just below the surface is discernible at low to mid-latitudes.

367 citations

Journal ArticleDOI
TL;DR: Using the local helioseismic technique of ring-diagram analysis applied to Michelson Doppler Imager (MDI) Dynamics Program data from the Solar and Heliospheric Observatory, this paper discovered that the meridional flow within the upper convection zone can develop additional circulation cells whose boundaries wander in latitude and depth as the solar cycle progresses.
Abstract: Using the local helioseismic technique of ring-diagram analysis applied to Michelson Doppler Imager (MDI) Dynamics Program data from the Solar and Heliospheric Observatory, we have discovered that the meridional flow within the upper convection zone can develop additional circulation cells whose boundaries wander in latitude and depth as the solar cycle progresses. We report on the large-scale meridional and zonal flows that we observe from 1996 to 2001. In particular, we discuss the appearance and evolution of a submerged meridional cell during the years 1998-2001, which arose in the northern hemisphere and disrupted the orderly poleward flow and symmetry about the equator that is typically observed. The meridional flows in the southern and northern hemispheres exhibit striking asymmetry during the past four years of the advancing solar cycle. Such asymmetry and additional circulation cells should have profound impact on the transport of angular momentum and magnetic field within the surface layers. These flows may have a significant role in the establishment and maintenance of the near-surface rotational shear layer.

349 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations

Book
01 Feb 2006
TL;DR: Wavelet analysis of finite energy signals and random variables and stochastic processes, analysis and synthesis of long memory processes, and the wavelet variance.
Abstract: 1. Introduction to wavelets 2. Review of Fourier theory and filters 3. Orthonormal transforms of time series 4. The discrete wavelet transform 5. The maximal overlap discrete wavelet transform 6. The discrete wavelet packet transform 7. Random variables and stochastic processes 8. The wavelet variance 9. Analysis and synthesis of long memory processes 10. Wavelet-based signal estimation 11. Wavelet analysis of finite energy signals Appendix. Answers to embedded exercises References Author index Subject index.

2,734 citations

Journal ArticleDOI
TL;DR: The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances as mentioned in this paper.
Abstract: The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.

2,242 citations

Journal ArticleDOI
TL;DR: The Michelson Doppler Imager (MDI) as mentioned in this paper was used to probe the interior of the Sun by measuring the photospheric manifestations of solar oscillations, revealing the static and dynamic properties of the convection zone and core.
Abstract: The Solar Oscillations Investigation (SOI) uses the Michelson Doppler Imager (MDI) instrument to probe the interior of the Sun by measuring the photospheric manifestations of solar oscillations. Characteristics of the modes reveal the static and dynamic properties of the convection zone and core. Knowledge of these properties will improve our understanding of the solar cycle and of stellar evolution. Other photospheric observations will contribute to our knowledge of the solar magnetic field and surface motions. The investigation consists of coordinated efforts by several teams pursuing specific scientific objectives. The instrument images the Sun on a 10242 CCD camera through a series of increasingly narrow spectral filters. The final elements, a pair of tunable Michelson interferometers, enable MDI to record filtergrams with a FWHM bandwidth of 94 mA. Normally 20 images centered at 5 wavelengths near the Ni I 6768 spectral line are recorded each minute. MDI calculates velocity and continuum intensity from the filtergrams with a resolution of 4″ over the whole disk. An extensive calibration program has verified the end-to-end performance of the instrument. To provide continuous observations of the longest-lived modes that reveal the internal structure of the Sun, a carefully-selected set of spatial averages are computed and downlinked at all times. About half the time MDI will also be able to downlink complete velocity and intensity images each minute. This high rate telemetry (HRT) coverage is available for at least a continuous 60-day interval each year and for 8 hours each day during the rest of the year. During the 8-hour HRT intervals, 10 of the exposures each minute can be programmed for other observations, such as measurements in MDI's higher resolution (1.25″) field centered about 160″ north of the equator; meanwhile, the continuous structure program proceeds during the other half minute. Several times each day, polarizers will be inserted to measure the line-of-sight magnetic field. MDI operations will be scheduled well in advance and will vary only during the daily 8-hour campaigns. Quick-look and summary data, including magnetograms, will be processed immediately. Most high-rate data will be delivered only by mail to the SOI Science Support Center (SSSC) at Stanford, where a processing pipeline will produce 3 Terabytes of calibrated data products each year. These data products will be analyzed using the SSSC and the distributed resources of the co-investigators. The data will be available for collaborative investigations.

2,154 citations

Book ChapterDOI
01 Dec 1995
TL;DR: The Solar Oscillations Investigation (SOI) as mentioned in this paper uses the Michelson Doppler Imager (MDI) instrument to probe the interior of the Sun by measuring the photospheric manifestations of solar oscillations.
Abstract: The Solar Oscillations Investigation (SOI) uses the Michelson Doppler Imager (MDI) instrument to probe the interior of the Sun by measuring the photospheric manifestations of solar oscillations. Characteristics of the modes reveal the static and dynamic properties of the convection zone and core. Knowledge of these properties will improve our understanding of the solar cycle and of stellar evolution. Other photospheric observations will contribute to our knowledge of the solar magnetic field and surface motions. The investigation consists of coordinated efforts by several teams pursuing specific scientific objectives.

1,910 citations