scispace - formally typeset
Search or ask a question
Author

Frank Kirchhoff

Bio: Frank Kirchhoff is an academic researcher from University of Ulm. The author has contributed to research in topics: Viral replication & Simian immunodeficiency virus. The author has an hindex of 90, co-authored 473 publications receiving 35434 citations. Previous affiliations of Frank Kirchhoff include Heidelberg University & Max Delbrück Center for Molecular Medicine.


Papers
More filters
Journal ArticleDOI
27 May 2005-Science
TL;DR: Using in vivo two-photon imaging in neocortex, it is found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions.
Abstract: Microglial cells represent the immune system of the mammalian brain and therefore are critically involved in various injuries and diseases. Little is known about their role in the healthy brain and their immediate reaction to brain damage. By using in vivo two-photon imaging in neocortex, we found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions. Furthermore, blood-brain barrier disruption provoked immediate and focal activation of microglia, switching their behavior from patroling to shielding of the injured site. Microglia thus are busy and vigilant housekeepers in the adult brain.

4,458 citations

Journal ArticleDOI
18 Dec 1992-Science
TL;DR: Rhesus monkeys vaccinated with live SIV deleted in nef were completely protected against challenge by intravenous inoculation of live, pathogenic SIV.
Abstract: Vaccine protection against the human immunodeficiency virus (HIV) and the related simian immunodeficiency virus (SIV) in animal models is proving to be a difficult task. The difficulty is due in large part to the persistent, unrelenting nature of HIV and SIV infection once infection is initiated. SIV with a constructed deletion in the auxiliary gene nef replicates poorly in rhesus monkeys and appears to be nonpathogenic in this normally susceptible host. Rhesus monkeys vaccinated with live SIV deleted in nef were completely protected against challenge by intravenous inoculation of live, pathogenic SIV. Deletion of nef or of multiple genetic elements from HIV may provide the means for creating a safe, effective, live attenuated vaccine to protect against acquired immunodeficiency syndrome (AIDS).

1,076 citations

Journal ArticleDOI
TL;DR: About 5 percent of seropositive persons have shown no HIV-related disease or declines in CD4+ cell counts despite 10 or more years of documented HIV-1 infection.
Abstract: Although disease develops within 10 years in most persons infected with human immunodeficiency virus type 1 (HIV-1), some remain symptom-free for prolonged periods.1,2 Most long-term asymptomatic survivors of HIV-1 infection still have evidence of disease progression in the form of declining CD4+ lymphocyte concentrations. However, some rare persons not only are asymptomatic but also maintain stable levels of CD4+ lymphocytes in the normal or near-normal range. Although the definition of nonprogression may vary, approximately 5 percent of seropositive persons have shown no HIV-related disease or declines in CD4+ cell counts despite 10 or more years of documented HIV-1 infection. . . .

985 citations

Journal ArticleDOI
09 Jan 2013-Neuron
TL;DR: Evidence is summarized that molecular pathways characterized in pathology are also utilized by microglia in the normal and developing brain to influence synaptic development and connectivity, and therefore should become targets of future research.

946 citations

Journal ArticleDOI
TL;DR: In this article, the authors found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions, switching their behavior from patroling to shielding of the injured site.
Abstract: Microglial cells represent the immune system of the mammalian brain and therefore are critically involved in various injuries and diseases. Little is known about their role in the healthy brain and their immediate reaction to brain damage. By using in vivo two-photon imaging in neocortex, we found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions. Furthermore, blood-brain barrier disruption provoked immediate and focal activation of microglia, switching their behavior from patroling to shielding of the injured site. Microglia thus are busy and vigilant housekeepers in the adult brain.

881 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review focuses on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
Abstract: Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.

6,141 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations