Author

# Frank R. Kschischang

Other affiliations: BlackBerry Limited, Massachusetts Institute of Technology, McMaster University ...read more

Bio: Frank R. Kschischang is an academic researcher from University of Toronto. The author has contributed to research in topics: Decoding methods & Low-density parity-check code. The author has an hindex of 58, co-authored 279 publications receiving 19853 citations. Previous affiliations of Frank R. Kschischang include BlackBerry Limited & Massachusetts Institute of Technology.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: A generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph, that computes-either exactly or approximately-various marginal functions derived from the global function.

Abstract: Algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset of the variables. Such a factorization can be visualized with a bipartite graph that we call a factor graph, In this tutorial paper, we present a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes-either exactly or approximately-various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.

6,637 citations

••

TL;DR: A Reed-Solomon-like code construction, related to Gabidulin's construction of maximum rank-distance codes, is described and a Sudan-style ldquolist-1rdquo minimum-distance decoding algorithm is provided.

Abstract: The problem of error-control in random linear network coding is considered. A ldquononcoherentrdquo or ldquochannel obliviousrdquo model is assumed where neither transmitter nor receiver is assumed to have knowledge of the channel transfer characteristic. Motivated by the property that linear network coding is vector-space preserving, information transmission is modeled as the injection into the network of a basis for a vector space V and the collection by the receiver of a basis for a vector space U. A metric on the projective geometry associated with the packet space is introduced, and it is shown that a minimum-distance decoder for this metric achieves correct decoding if the dimension of the space V capU is sufficiently large. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or, equivalently, a subset of the vertices of the corresponding Grassmann graph. Sphere-packing and sphere-covering bounds as well as a generalization of the singleton bound are provided for such codes. Finally, a Reed-Solomon-like code construction, related to Gabidulin's construction of maximum rank-distance codes, is described and a Sudan-style ldquolist-1rdquo minimum-distance decoding algorithm is provided.

1,121 citations

••

TL;DR: In this paper, the problem of error control in random linear network coding is addressed from a matrix perspective that is closely related to the subspace perspective of Rotter and Kschischang.

Abstract: The problem of error control in random linear network coding is addressed from a matrix perspective that is closely related to the subspace perspective of Rotter and Kschischang. A large class of constant-dimension subspace codes is investigated. It is shown that codes in this class can be easily constructed from rank-metric codes, while preserving their distance properties. Moreover, it is shown that minimum distance decoding of such subspace codes can be reformulated as a generalized decoding problem for rank-metric codes where partial information about the error is available. This partial information may be in the form of erasures (knowledge of an error location but not its value) and deviations (knowledge of an error value but not its location). Taking erasures and deviations into account (when they occur) strictly increases the error correction capability of a code: if mu erasures and delta deviations occur, then errors of rank t can always be corrected provided that 2t les d - 1 + mu + delta, where d is the minimum rank distance of the code. For Gabidulin codes, an important family of maximum rank distance codes, an efficient decoding algorithm is proposed that can properly exploit erasures and deviations. In a network coding application, where n packets of length M over F(q) are transmitted, the complexity of the decoding algorithm is given by O(dM) operations in an extension field F(qn).

668 citations

••

TL;DR: The problem of error control in random linear network coding is addressed from a matrix perspective that is closely related to the subspace perspective of Rotter and Kschischang and an efficient decoding algorithm is proposed that can properly exploit erasures and deviations.

Abstract: The problem of error control in random linear network coding is addressed from a matrix perspective that is closely related to the subspace perspective of K\"otter and Kschischang. A large class of constant-dimension subspace codes is investigated. It is shown that codes in this class can be easily constructed from rank-metric codes, while preserving their distance properties. Moreover, it is shown that minimum distance decoding of such subspace codes can be reformulated as a generalized decoding problem for rank-metric codes where partial information about the error is available. This partial information may be in the form of erasures (knowledge of an error location but not its value) and deviations (knowledge of an error value but not its location). Taking erasures and deviations into account (when they occur) strictly increases the error correction capability of a code: if $\mu$ erasures and $\delta$ deviations occur, then errors of rank $t$ can always be corrected provided that $2t \leq d - 1 + \mu + \delta$, where $d$ is the minimum rank distance of the code. For Gabidulin codes, an important family of maximum rank distance codes, an efficient decoding algorithm is proposed that can properly exploit erasures and deviations. In a network coding application where $n$ packets of length $M$ over $F_q$ are transmitted, the complexity of the decoding algorithm is given by $O(dM)$ operations in an extension field $F_{q^n}$.

563 citations

••

ETH Zurich

^{1}, RIKEN Brain Science Institute^{2}, City University of Hong Kong^{3}, University of Toronto^{4}TL;DR: The message-passing approach to model-based signal processing is developed with a focus on Gaussian message passing in linear state-space models, which includes recursive least squares, linear minimum-mean-squared-error estimation, and Kalman filtering algorithms.

Abstract: The message-passing approach to model-based signal processing is developed with a focus on Gaussian message passing in linear state-space models, which includes recursive least squares, linear minimum-mean-squared-error estimation, and Kalman filtering algorithms. Tabulated message computation rules for the building blocks of linear models allow us to compose a variety of such algorithms without additional derivations or computations. Beyond the Gaussian case, it is emphasized that the message-passing approach encourages us to mix and match different algorithmic techniques, which is exemplified by two different approaches - steepest descent and expectation maximization - to message passing through a multiplier node.

517 citations

##### Cited by

More filters

Microsoft

^{1}TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.

Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

••

TL;DR: This work reveals that it is in general not optimal to regard the information to be multicast as a "fluid" which can simply be routed or replicated, and by employing coding at the nodes, which the work refers to as network coding, bandwidth can in general be saved.

Abstract: We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a point-to-point communication network on which a number of information sources are to be multicast to certain sets of destinations. We assume that the information sources are mutually independent. The problem is to characterize the admissible coding rate region. This model subsumes all previously studied models along the same line. We study the problem with one information source, and we have obtained a simple characterization of the admissible coding rate region. Our result can be regarded as the max-flow min-cut theorem for network information flow. Contrary to one's intuition, our work reveals that it is in general not optimal to regard the information to be multicast as a "fluid" which can simply be routed or replicated. Rather, by employing coding at the nodes, which we refer to as network coding, bandwidth can in general be saved. This finding may have significant impact on future design of switching systems.

8,533 citations

•

01 Jan 2005

TL;DR: This book aims to provide a chronology of key events and individuals involved in the development of microelectronics technology over the past 50 years and some of the individuals involved have been identified and named.

Abstract: Alhussein Abouzeid Rensselaer Polytechnic Institute Raviraj Adve University of Toronto Dharma Agrawal University of Cincinnati Walid Ahmed Tyco M/A-COM Sonia Aissa University of Quebec, INRSEMT Huseyin Arslan University of South Florida Nallanathan Arumugam National University of Singapore Saewoong Bahk Seoul National University Claus Bauer Dolby Laboratories Brahim Bensaou Hong Kong University of Science and Technology Rick Blum Lehigh University Michael Buehrer Virginia Tech Antonio Capone Politecnico di Milano Javier Gómez Castellanos National University of Mexico Claude Castelluccia INRIA Henry Chan The Hong Kong Polytechnic University Ajit Chaturvedi Indian Institute of Technology Kanpur Jyh-Cheng Chen National Tsing Hua University Yong Huat Chew Institute for Infocomm Research Tricia Chigan Michigan Tech Dong-Ho Cho Korea Advanced Institute of Science and Tech. Jinho Choi University of New South Wales Carlos Cordeiro Philips Research USA Laurie Cuthbert Queen Mary University of London Arek Dadej University of South Australia Sajal Das University of Texas at Arlington Franco Davoli DIST University of Genoa Xiaodai Dong, University of Alberta Hassan El-sallabi Helsinki University of Technology Ozgur Ercetin Sabanci University Elza Erkip Polytechnic University Romano Fantacci University of Florence Frank Fitzek Aalborg University Mario Freire University of Beira Interior Vincent Gaudet University of Alberta Jairo Gutierrez University of Auckland Michael Hadjitheodosiou University of Maryland Zhu Han University of Maryland College Park Christian Hartmann Technische Universitat Munchen Hossam Hassanein Queen's University Soong Boon Hee Nanyang Technological University Paul Ho Simon Fraser University Antonio Iera University "Mediterranea" of Reggio Calabria Markku Juntti University of Oulu Stefan Kaiser DoCoMo Euro-Labs Nei Kato Tohoku University Dongkyun Kim Kyungpook National University Ryuji Kohno Yokohama National University Bhaskar Krishnamachari University of Southern California Giridhar Krishnamurthy Indian Institute of Technology Madras Lutz Lampe University of British Columbia Bjorn Landfeldt The University of Sydney Peter Langendoerfer IHP Microelectronics Technologies Eddie Law Ryerson University in Toronto

7,826 citations

••

TL;DR: A generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph, that computes-either exactly or approximately-various marginal functions derived from the global function.

Abstract: Algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset of the variables. Such a factorization can be visualized with a bipartite graph that we call a factor graph, In this tutorial paper, we present a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes-either exactly or approximately-various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.

6,637 citations