scispace - formally typeset
Search or ask a question
Author

Frank Rusnak

Bio: Frank Rusnak is an academic researcher from Mayo Clinic. The author has contributed to research in topics: Calcineurin & Phosphatase. The author has an hindex of 30, co-authored 64 publications receiving 4076 citations. Previous affiliations of Frank Rusnak include University of Rochester & University of Belgrade.


Papers
More filters
Journal ArticleDOI
TL;DR: This review provides a comprehensive examination of the biological roles of calcineurin and reviews aspects related to its structure and catalytic mechanism.
Abstract: Calcineurin is a eukaryotic Ca2+- and calmodulin-dependent serine/threonine protein phosphatase. It is a heterodimeric protein consisting of a catalytic subunit calcineurin A, which contains an act...

1,296 citations

Journal ArticleDOI
TL;DR: It is proposed that iron-dependent self-assembly of recombinant mYfh1p reflects a physiological role for frataxin in mitochondrial iron sequestration and bioavailability and is essential for mitochondrial iron homeostasis and protection from iron-induced formation of free radicals.
Abstract: Frataxin deficiency is the primary cause of Friedreich ataxia (FRDA), an autosomal recessive cardiodegenerative and neurodegenerative disease. Frataxin is a nuclear-encoded mitochondrial protein that is widely conserved among eukaryotes. Genetic inactivation of the yeast frataxin homologue (Yfh1p) results in mitochondrial iron accumulation and hypersensitivity to oxidative stress. Increased iron deposition and evidence of oxidative damage have also been observed in cardiac tissue and cultured fibroblasts from patients with FRDA. These findings indicate that frataxin is essential for mitochondrial iron homeostasis and protection from iron-induced formation of free radicals. The functional mechanism of frataxin, however, is still unknown. We have expressed the mature form of Yfh1p (mYfh1p) in Escherichia coli and have analyzed its function in vitro. Isolated mYfh1p is a soluble monomer (13,783 Da) that contains no iron and shows no significant tendency to self-associate. Aerobic addition of ferrous iron to mYfh1p results in assembly of regular spherical multimers with a molecular mass of ∼1.1 MDa (megadaltons) and a diameter of 13±2 nm. Each multimer consists of ∼60 subunits and can sequester >3,000 atoms of iron. Titration of mYfh1p with increasing iron concentrations supports a stepwise mechanism of multimer assembly. Sequential addition of an iron chelator and a reducing agent results in quantitative iron release with concomitant disassembly of the multimer, indicating that mYfh1p sequesters iron in an available form. In yeast mitochondria, native mYfh1p exists as monomer and a higher-order species with a molecular weight >600,000. After addition of 55Fe to the medium, immunoprecipitates of this species contain >16 atoms of 55Fe per molecule of mYfh1p. We propose that iron-dependent self-assembly of recombinant mYfh1p reflects a physiological role for frataxin in mitochondrial iron sequestration and bioavailability.

248 citations

Journal ArticleDOI
TL;DR: In all inhibition assays with [32P]casein or [Ser(32P)15]RII, the concentration of calcineurin required for measurable phosphatase activity is such that these complexes behave as tight-binding inhibitors of calcinesurin, and steady-state kinetics cannot be used to assess inhibition patterns or Ki values.
Abstract: The Ca(2+)- and calmodulin-dependent protein phosphatase calcineurin is inhibited by the immunosuppressant drug cyclosporin A in the presence of cyclophilin A or B. Of the two isoforms, cyclophilin B is more potent by a factor of 2-5 when either the phosphoprotein [32P]casein or the [32P]phosphoserine [Ser(32P)] form of the 19-residue bovine cardiac cAMP-dependent protein kinase regulatory subunit peptide RII, [Ser(32P)15]RII, is used as substrate. With [Ser(32P15]RII as substrate, the concentrations of the cyclosporin A.cyclophilin A and cyclosporin A.cyclophilin B complexes, which cause 50% inhibition of calcineurin activity, are 120 and 50 nM, respectively. Lowering the concentration of calcineurin 80% with [32P]casein as substrate lowered the apparent inhibition constant for each complex even further; 50% inhibition of calcineurin was observed at 40 nM for cyclosporin A.cyclophilin A, whereas it was less than 10 nM for cyclosporin A.cyclophilin B. In all inhibition assays with [32P]casein or [Ser(32P)15]RII, the concentration of calcineurin required for measurable phosphatase activity is such that these complexes behave as tight-binding inhibitors of calcineurin, and steady-state kinetics cannot be used to assess inhibition patterns or Ki values. Limited trypsinization of calcineurin produces a fragment that is still inhibited, indicating that the interaction of cyclosporin.cyclophilin with calcineurin does not require either calmodulin or Ca2+.

169 citations

Journal ArticleDOI
24 Aug 1995-Nature
TL;DR: Calineurin, a protein phosphatase enriched in growth cones that is dependent on calcium ions and calmodulin, functions in neurite outgrowth and directed filopodial motility in cultured chick dorsal root ganglia neurons.
Abstract: The neuronal growth cone is thought to be the site of decision making in nerve growth and guidance. One likely mechanism of how the growth cone translates various extracellular cues into directed motility involves rises in intracellular calcium. A variety of physiological cues, such as adhesion molecules and neurotransmitters, increases intracellular calcium, and artificial manipulations of growth cone calcium levels affect growth cone morphology and neurite outgrowth. The molecular events downstream of calcium fluxes are incompletely understood. Here we show that calcineurin, a protein phosphatase enriched in growth cones that is dependent on calcium ions and calmodulin, functions in neurite outgrowth and directed filopodial motility in cultured chick dorsal root ganglia neurons. Cyclosporin A and FK506, inhibitors of calcineurin, delayed neuritogenesis and inhibited neurite extension. Chromophore-assisted laser inactivation of calcineurin in regions of growth cones causes localized filopodial and lamellipodial retraction and influences the direction of subsequent outgrowth. We suggest that a spatial distribution of calcineurin activity within the growth cone can regulate motility and direct outgrowth.

158 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that calcineurin inhibitors, cyclosporin A (CsA) and FK 506 (0.3 mg · kg −1 · d −1 ) or even higher doses of CsA (10 and 20 mg· kg − 1 · d−1 ) were sufficient to prevent the development of pressure-overload hypertrophy in the spontaneously hypertensive rat and aortic banding.
Abstract: —A rapidly emerging body of literature implicates a pivotal role for the Ca 2+ -calmodulin–dependent phosphatase calcineurin as a cellular target for a variety of Ca 2+ -dependent signaling pathways culminating in left ventricular hypertrophy (LVH). Most of the recent experimental support for this hypothesis is derived from in vitro studies or in vivo studies in transgenic mice expressing activated calcineurin or mutant sarcomeric proteins. The aim of the present study was to test whether calcineurin inhibitors, cyclosporin A (CsA) and FK 506, prevent pressure-overload LVH using 2 standard rat models: (1) the spontaneously hypertensive rat (SHR) and (2) aortic banding. The major new findings are 2-fold. First, in SHR, LVH (left ventricular weight to body weight ratio) was unaffected by a dose of CsA (5 mg · kg −1 · d −1 ) that was sufficient to raise blood pressure and to inhibit calcineurin-mediated transcriptional activation in skeletal muscle. Second, in rats with aortic banding, LVH was unaffected by FK 506 (0.3 mg · kg −1 · d −1 ) or even higher doses of CsA (10 and 20 mg · kg −1 · d −1 ) that were sufficient to inhibit 90% of total calcineurin phosphatase activity in the hypertrophied myocardium. In the latter experiments, CsA blocked neither the elevated left ventricular end-diastolic pressures, a measure of diastolic function, nor the induction in atrial natriuretic peptide mRNA in the hypertrophic ventricles. Thus, in numerous experiments, systemic administration of potent calcineurin inhibitors did not prevent the development of LVH in 2 classic models of pressure-overload hypertrophy. These results demonstrate that pressure-overload hypertrophy can arise through calcineurin-independent pathways.

141 citations


Cited by
More filters
Journal ArticleDOI
15 Nov 1996-Science
TL;DR: Evidence is accumulating that these mechanisms act simultaneously and in a coordinated manner to direct pathfinding and that they are mediated by mechanistically and evolutionarily conserved ligand-receptor systems.
Abstract: Neuronal growth cones navigate over long distances along specific pathways to find their correct targets. The mechanisms and molecules that direct this pathfinding are the topics of this review. Growth cones appear to be guided by at least four different mechanisms: contact attraction, chemoattraction, contact repulsion, and chemorepulsion. Evidence is accumulating that these mechanisms act simultaneously and in a coordinated manner to direct pathfinding and that they are mediated by mechanistically and evolutionarily conserved ligand-receptor systems.

3,166 citations

Journal ArticleDOI
TL;DR: This review will concentrate on findings with P-450cam of the Pseudomonas putida camphor-5-exo-hydroxylase, and attention will be drawn to parallel and contrasting examples from other P- 450s as appropriate.
Abstract: Two decades have passed since the discovery in liver microsomes of a haemprotein that forms a reduced-CO complex with the absorptive maximum of the Soret at 450 nm (Klingenberg, 1958; Garfinkel, 1958) and the identification of this protein as a new cytochrome: pigment cytochrome, P-450 (Omura and Sato, 1962, 1964a). In the intervening years, the study of cytochrome P-450 dependent monoxygenases has expanded exponentially. From the first crude attempts to solubilise a P-450 (Omura and Sato, 1963, 1964b) to the determination of the primary, secondary, and tertiary structure of cytochrome P-450cam by amino acid sequencing (Haniu et al., 1982a,b) and x-ray crystallography (Poulos et al., 1984) our understanding of this unique family of proteins has been advancing on all fronts. Since, perhaps, the greatest understanding of the structure and mechanism of P-450s has come from concentrated study of P-450cam of the Pseudomonas putida camphor-5-exo-hydroxylase, this review will concentrate on findings with P-450cam; attention will be drawn to parallel and contrasting examples from other P-450s as appropriate.

1,721 citations

Journal ArticleDOI
30 Apr 2004-Cell
TL;DR: The study of iron biology has provided novel insights into gene regulation and unveiled remarkable links to the immune system.

1,687 citations

Journal ArticleDOI
TL;DR: An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
Abstract: The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.

1,589 citations

Journal ArticleDOI
19 Apr 2002-Cell
TL;DR: Calcium signaling activates the phosphatase calcineurin and induces movement of NFATc proteins into the nucleus, where they cooperate with other proteins to form complexes on DNA.

1,335 citations