scispace - formally typeset
Search or ask a question
Author

Frank Schweizer

Bio: Frank Schweizer is an academic researcher from University of Manitoba. The author has contributed to research in topics: Efflux & Pseudomonas aeruginosa. The author has an hindex of 37, co-authored 151 publications receiving 5323 citations. Previous affiliations of Frank Schweizer include University of Lethbridge & University of Alberta.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability of CAPs to bypass established resistance mechanisms provides an attractive strategy to develop novel lead structures for cancer treatment and Peptidomimetic approaches combined with novel selective delivery devices show promise in overcoming some of these obstacles.

445 citations

Journal ArticleDOI
01 Feb 2013-Drugs
TL;DR: Pharmacodynamic data suggest that ceftazidime-avibactam is rapidly bactericidal versus β-lactamase-producing Gram-negative bacilli that are not inhibited by ceftAZidime alone.
Abstract: Avibactam (formerly NXL104, AVE1330A) is a synthetic non-β-lactam, β-lactamase inhibitor that inhibits the activities of Ambler class A and C β-lactamases and some Ambler class D enzymes. This review summarizes the existing data published for ceftazidime-avibactam, including relevant chemistry, mechanisms of action and resistance, microbiology, pharmacokinetics, pharmacodynamics, and efficacy and safety data from animal and human trials. Although not a β-lactam, the chemical structure of avibactam closely resembles portions of the cephem bicyclic ring system, and avibactam has been shown to bond covalently to β-lactamases. Very little is known about the potential for avibactam to select for resistance. The addition of avibactam greatly (4-1024-fold minimum inhibitory concentration [MIC] reduction) improves the activity of ceftazidime versus most species of Enterobacteriaceae depending on the presence or absence of β-lactamase enzyme(s). Against Pseudomonas aeruginosa, the addition of avibactam also improves the activity of ceftazidime (~fourfold MIC reduction). Limited data suggest that the addition of avibactam does not improve the activity of ceftazidime versus Acinetobacter species or most anaerobic bacteria (exceptions: Bacteroides fragilis, Clostridium perfringens, Prevotella spp. and Porphyromonas spp.). The pharmacokinetics of avibactam follow a two-compartment model and do not appear to be altered by the co-administration of ceftazidime. The maximum plasma drug concentration (Cmax) and area under the plasma concentration-time curve (AUC) of avibactam increase linearly with doses ranging from 50 mg to 2,000 mg. The mean volume of distribution and half-life of 22 L (~0.3 L/kg) and ~2 hours, respectively, are similar to ceftazidime. Like ceftazidime, avibactam is primarily renally excreted, and clearance correlates with creatinine clearance. Pharmacodynamic data suggest that ceftazidime-avibactam is rapidly bactericidal versus β-lactamase-producing Gram-negative bacilli that are not inhibited by ceftazidime alone.

351 citations

Journal ArticleDOI
01 Jan 2014-Drugs
TL;DR: Time-kill experiments and animal infection models have demonstrated that the pharmacokinetic–pharmacodynamic index that is best correlated with ceftolozane’s in vivo efficacy is the percentage of time in which free plasma drug concentrations exceed the minimum inhibitory concentration of a given pathogen, as expected of β-lactams.
Abstract: Ceftolozane is a novel cephalosporin currently being developed with the β-lactamase inhibitor tazobactam for the treatment of complicated urinary tract infections (cUTIs), complicated intra-abdominal infections (cIAIs), and ventilator-associated bacterial pneumonia (VABP). The chemical structure of ceftolozane is similar to that of ceftazidime, with the exception of a modified side-chain at the 3-position of the cephem nucleus, which confers potent antipseudomonal activity. As a β-lactam, its mechanism of action is the inhibition of penicillin-binding proteins (PBPs). Ceftolozane displays increased activity against Gram-negative bacilli, including those that harbor classical β-lactamases (e.g., TEM-1 and SHV-1), but, similar to other oxyimino-cephalosporins such as ceftazidime and ceftriaxone, it is compromised by extended-spectrum β-lactamases (ESBLs) and carbapenemases. The addition of tazobactam extends the activity of ceftolozane to include most ESBL producers as well as some anaerobic species. Ceftolozane is distinguished from other cephalosporins by its potent activity versus Pseudomonas aeruginosa, including various drug-resistant phenotypes such as carbapenem, piperacillin/tazobactam, and ceftazidime-resistant isolates, as well as those strains that are multidrug-resistant (MDR). Its antipseudomonal activity is attributed to its ability to evade the multitude of resistance mechanisms employed by P. aeruginosa, including efflux pumps, reduced uptake through porins and modification of PBPs. Ceftolozane demonstrates linear pharmacokinetics unaffected by the coadministration of tazobactam; specifically, it follows a two-compartmental model with linear elimination. Following single doses, ranging from 250 to 2,000 mg, over a 1-h intravenous infusion, ceftolozane displays a mean plasma half-life of 2.3 h (range 1.9–2.6 h), a steady-state volume of distribution that ranges from 13.1 to 17.6 L, and a mean clearance of 102.4 mL/min. It demonstrates low plasma protein binding (20 %), is primarily eliminated via urinary excretion (≥92 %), and may require dose adjustments in patients with a creatinine clearance <50 mL/min. Time-kill experiments and animal infection models have demonstrated that the pharmacokinetic–pharmacodynamic index that is best correlated with ceftolozane’s in vivo efficacy is the percentage of time in which free plasma drug concentrations exceed the minimum inhibitory concentration of a given pathogen (%fT >MIC), as expected of β-lactams. Two phase II clinical trials have been conducted to evaluate ceftolozane ± tazobactam in the settings of cUTIs and cIAIs. One trial compared ceftolozane 1,000 mg every 8 h (q8h) versus ceftazidime 1,000 mg q8h in the treatment of cUTI, including pyelonephritis, and demonstrated similar microbiologic and clinical outcomes, as well as a similar incidence of adverse effects after 7–10 days of treatment, respectively. A second trial has been conducted comparing ceftolozane/tazobactam 1,000/500 mg and metronidazole 500 mg q8h versus meropenem 1,000 mg q8h in the treatment of cIAI. A number of phase I and phase II studies have reported ceftolozane to possess a good safety and tolerability profile, one that is consistent with that of other cephalosporins. In conclusion, ceftolozane is a new cephalosporin with activity versus MDR organisms including P. aeruginosa. Tazobactam allows the broadening of the spectrum of ceftolozane versus β-lactamase-producing Gram-negative bacilli including ESBLs. Potential roles for ceftolozane/tazobactam include empiric therapy where infection by a resistant Gram-negative organism (e.g., ESBL) is suspected, or as part of combination therapy (e.g., with metronidazole) where a polymicrobial infection is suspected. In addition, ceftolozane/tazobactam may represent alternative therapy to the third-generation cephalosporins after treatment failure or for documented infections due to Gram-negative bacilli producing ESBLs. Finally, the increased activity of ceftolozane/tazobactam versus P. aeruginosa, including MDR strains, may lead to the treatment of suspected and documented P. aeruginosa infections with this agent. Currently, ceftolozane/tazobactam is being evaluated in three phase III trials for the treatment of cUTI, cIAI, and VABP.

278 citations

Journal ArticleDOI
07 May 2010-Drugs
TL;DR: Clinical trials involving patients with complicated skin and skin structure infections (cSSSIs) have demonstrated that all three agents are as efficacious as comparators, and the most common adverse effects reported with dalbavancin use included nausea, diarrhoea and constipation.
Abstract: Dalbavancin, oritavancin and telavancin are semisynthetic lipoglycopeptides that demonstrate promise for the treatment of patients with infections caused by multi-drug-resistant Gram-positive pathogens. Each of these agents contains a heptapeptide core, common to all glycopeptides, which enables them to inhibit transglycosylation and transpeptidation (cell wall synthesis). Modifications to the heptapeptide core result in different in vitro activities for the three semisynthetic lipoglycopeptides. All three lipoglycopeptides contain lipophilic side chains, which prolong their half-life, help to anchor the agents to the cell membrane and increase their activity against Gram-positive cocci. In addition to inhibiting cell wall synthesis, telavancin and oritavancin are also able to disrupt bacterial membrane integrity and increase membrane permeability; oritavancin also inhibits RNA synthesis. Enterococci exhibiting the VanA phenotype (resistance to both vancomycin and teicoplanin) are resistant to both dalbavancin and telavancin, while oritavancin retains activity. Dalbavancin, oritavancin and telavancin exhibit activity against VanB vancomycin-resistant enterococci. All three lipoglycopeptides demonstrate potent in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis regardless of their susceptibility to meticillin, as well as Streptococcus spp. Both dalbavancin and telavancin are active against vancomycin-intermediate S. aureus (VISA), but display poor activity versus vancomycin-resistant S. aureus (VRSA). Oritavancin is active against both VISA and VRSA. Telavancin displays greater activity against Clostridium spp. than dalbavancin, oritavancin or vancomycin. The half-life of dalbavancin ranges from 147 to 258 hours, which allows for once-weekly dosing, the half-life of oritavancin of 393 hours may allow for one dose per treatment course, while telavancin requires daily administration. Dalbavancin and telavancin exhibit concentration-dependent activity and AUC/MIC (area under the concentration-time curve to minimum inhibitory concentration ratio) is the pharmacodynamic parameter that best describes their activities. Oritavancin's activity is also considered concentration-dependent in vitro, while in vivo its activity has been described by both concentration and time-dependent models; however, AUC/MIC is the pharmacodynamic parameter that best describes its activity. Clinical trials involving patients with complicated skin and skin structure infections (cSSSIs) have demonstrated that all three agents are as efficacious as comparators. The most common adverse effects reported with dalbavancin use included nausea, diarrhoea and constipation, while injection site reactions, fever and diarrhoea were commonly observed with oritavancin therapy. Patients administered telavancin frequently reported nausea, taste disturbance and insomnia. To date, no drug-drug interactions have been identified for dalbavancin, oritavancin or telavancin. All three of these agents are promising alternatives for the treatment of cSSSIs in cases where more economical options such as vancomycin have been ineffective, in cases of reduced vancomycin susceptibility or resistance, or where vancomycin use has been associated with adverse events.

272 citations

Journal ArticleDOI
TL;DR: Cationic amphiphiles promise to provide a new and rich source of diverse antibacterial lead structures in the years to come.
Abstract: Naturally occurring cationic antimicrobial peptides (AMPs) and their mimics form a diverse class of antibacterial agents currently validated in preclinical and clinical settings for the treatment of infections caused by antimicrobial-resistant bacteria Numerous studies with linear, cyclic, and diastereomeric AMPs have strongly supported the hypothesis that their physicochemical properties, rather than any specific amino acid sequence, are responsible for their microbiological activities It is generally believed that the amphiphilic topology is essential for insertion into and disruption of the cytoplasmic membrane In particular, the ability to rapidly kill bacteria and the relative difficulty with which bacteria develop resistance make AMPs and their mimics attractive targets for drug development However, the therapeutic use of naturally occurring AMPs is hampered by the high manufacturing costs, poor pharmacokinetic properties, and low bacteriological efficacy in animal models In order to overcome these problems, a variety of novel and structurally diverse cationic amphiphiles that mimic the amphiphilic topology of AMPs have recently appeared Many of these compounds exhibit superior pharmacokinetic properties and reduced in vitro toxicity while retaining potent antibacterial activity against resistant and nonresistant bacteria In summary, cationic amphiphiles promise to provide a new and rich source of diverse antibacterial lead structures in the years to come

271 citations


Cited by
More filters
Journal ArticleDOI
08 Sep 2006-Cell
TL;DR: This review discusses the increasingly sophisticated molecular mechanisms being discovered by which mammalian glycosylation governs physiology and contributes to disease.

2,376 citations

Journal ArticleDOI
TL;DR: How basic science studies are elucidating the molecular details of the crosstalk that occurs at the host–pathogen interface, as well as the consequences of these interactions for the pathophysiology of UTIs is discussed.
Abstract: Urinary tract infections (UTIs) are a severe public health problem and are caused by a range of pathogens, but most commonly by Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus. High recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly increase the economic burden of these infections. In this Review, we discuss how basic science studies are elucidating the molecular details of the crosstalk that occurs at the host-pathogen interface, as well as the consequences of these interactions for the pathophysiology of UTIs. We also describe current efforts to translate this knowledge into new clinical treatments for UTIs.

2,251 citations

Journal ArticleDOI
TL;DR: This review details the epidemiology of CA-MRSA strains and the clinical spectrum of infectious syndromes associated with them that ranges from a commensal state to severe, overwhelming infection and addresses the therapy of these infections and strategies for their prevention.
Abstract: Summary: Staphylococcus aureus is an important cause of skin and soft-tissue infections (SSTIs), endovascular infections, pneumonia, septic arthritis, endocarditis, osteomyelitis, foreign-body infections, and sepsis. Methicillin-resistant S. aureus (MRSA) isolates were once confined largely to hospitals, other health care environments, and patients frequenting these facilities. Since the mid-1990s, however, there has been an explosion in the number of MRSA infections reported in populations lacking risk factors for exposure to the health care system. This increase in the incidence of MRSA infection has been associated with the recognition of new MRSA clones known as community-associated MRSA (CA-MRSA). CA-MRSA strains differ from the older, health care-associated MRSA strains; they infect a different group of patients, they cause different clinical syndromes, they differ in antimicrobial susceptibility patterns, they spread rapidly among healthy people in the community, and they frequently cause infections in health care environments as well. This review details what is known about the epidemiology of CA-MRSA strains and the clinical spectrum of infectious syndromes associated with them that ranges from a commensal state to severe, overwhelming infection. It also addresses the therapy of these infections and strategies for their prevention.

1,807 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations