scispace - formally typeset
Search or ask a question
Author

Frank Stratmann

Bio: Frank Stratmann is an academic researcher from Leibniz Association. The author has contributed to research in topics: Aerosol & Particle. The author has an hindex of 35, co-authored 102 publications receiving 3947 citations.


Papers
More filters
Journal ArticleDOI
Joao Almeida1, Joao Almeida2, Siegfried Schobesberger3, Andreas Kürten2, Ismael K. Ortega3, Oona Kupiainen-Määttä3, Arnaud P. Praplan4, Alexey Adamov3, António Amorim5, F. Bianchi4, Martin Breitenlechner6, A. David1, Josef Dommen4, Neil M. Donahue7, Andrew J. Downard8, Eimear M. Dunne9, Jonathan Duplissy3, Sebastian Ehrhart2, Richard C. Flagan8, Alessandro Franchin3, Roberto Guida1, Jani Hakala3, Armin Hansel6, Martin Heinritzi6, Henning Henschel3, Tuija Jokinen3, Heikki Junninen3, Maija Kajos3, Juha Kangasluoma3, Helmi Keskinen10, Agnieszka Kupc11, Theo Kurtén3, Alexander N. Kvashin12, Ari Laaksonen10, Ari Laaksonen13, Katrianne Lehtipalo3, Markus Leiminger2, Johannes Leppä13, Ville Loukonen3, Vladimir Makhmutov12, Serge Mathot1, Matthew J. McGrath14, Tuomo Nieminen15, Tuomo Nieminen3, Tinja Olenius3, Antti Onnela1, Tuukka Petäjä3, Francesco Riccobono4, Ilona Riipinen16, Matti P. Rissanen3, Linda Rondo2, Taina Ruuskanen3, Filipe Duarte Santos5, Nina Sarnela3, Simon Schallhart3, R. Schnitzhofer6, John H. Seinfeld8, Mario Simon2, Mikko Sipilä3, Mikko Sipilä15, Yuri Stozhkov12, Frank Stratmann17, António Tomé5, Jasmin Tröstl4, Georgios Tsagkogeorgas17, Petri Vaattovaara10, Yrjö Viisanen13, Annele Virtanen10, Aron Vrtala11, Paul E. Wagner11, Ernest Weingartner4, Heike Wex17, Christina Williamson2, Daniela Wimmer2, Daniela Wimmer3, Penglin Ye7, Taina Yli-Juuti3, Kenneth S. Carslaw9, Markku Kulmala3, Markku Kulmala15, Joachim Curtius2, Urs Baltensperger4, Douglas R. Worsnop, Hanna Vehkamäki3, Jasper Kirkby2, Jasper Kirkby1 
17 Oct 2013-Nature
TL;DR: The results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Abstract: Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sun ...

738 citations

Journal ArticleDOI
Jasper Kirkby1, Jasper Kirkby2, Jonathan Duplissy3, Jonathan Duplissy4, Kamalika Sengupta5, Carla Frege6, Hamish Gordon1, Christina Williamson2, Christina Williamson7, Martin Heinritzi8, Martin Heinritzi2, Mario Simon2, Chao Yan4, Joao Almeida1, Joao Almeida2, Jasmin Tröstl6, Tuomo Nieminen3, Tuomo Nieminen4, Ismael K. Ortega, Robert Wagner4, Alexey Adamov4, António Amorim9, Anne-Kathrin Bernhammer8, F. Bianchi10, F. Bianchi6, Martin Breitenlechner8, Sophia Brilke2, Xuemeng Chen4, J. S. Craven11, Antonio Dias1, Sebastian Ehrhart1, Sebastian Ehrhart2, Richard C. Flagan11, Alessandro Franchin4, Claudia Fuchs6, Roberto Guida1, Jani Hakala4, Christopher R. Hoyle6, Tuija Jokinen4, Heikki Junninen4, Juha Kangasluoma4, Jaeseok Kim7, Jaeseok Kim12, Manuel Krapf6, Andreas Kürten2, Ari Laaksonen13, Ari Laaksonen12, Katrianne Lehtipalo6, Katrianne Lehtipalo4, Vladimir Makhmutov14, Serge Mathot1, Ugo Molteni6, Antti Onnela1, Otso Peräkylä4, Felix Piel2, Tuukka Petäjä4, Arnaud P. Praplan4, Kirsty J. Pringle5, Alexandru Rap5, N. A. D. Richards5, Ilona Riipinen15, Matti P. Rissanen4, Linda Rondo2, Nina Sarnela4, Siegfried Schobesberger7, Siegfried Schobesberger4, Catherine E. Scott5, John H. Seinfeld11, Mikko Sipilä3, Mikko Sipilä4, Gerhard Steiner8, Gerhard Steiner4, Gerhard Steiner16, Yuri Stozhkov14, Frank Stratmann17, António Tomé18, Annele Virtanen12, Alexander L. Vogel1, Andrea Christine Wagner2, Paul E. Wagner16, Ernest Weingartner6, Daniela Wimmer4, Daniela Wimmer2, Paul M. Winkler16, Penglin Ye19, Xuan Zhang11, Armin Hansel8, Josef Dommen6, Neil M. Donahue19, Douglas R. Worsnop12, Douglas R. Worsnop4, Urs Baltensperger6, Markku Kulmala4, Markku Kulmala3, Kenneth S. Carslaw5, Joachim Curtius2 
26 May 2016-Nature
TL;DR: Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
Abstract: Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.

502 citations

Journal ArticleDOI
TL;DR: In this article, a new analytical expression has been derived to predict atmospheric conditions where homogeneous water-sulphuric acid nucleation will have a significant effect on aerosol and cloud condensation nuclei population.

180 citations

Journal ArticleDOI
TL;DR: The laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported, and improved mass spectrometric methods allow for a better description of the diurnal behaviour of thehighly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere.
Abstract: Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth’s radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with α- and β-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere. Secondary organic aerosols are important contributors to the Earth’s radiation budget, however questions remain about their formation from highly-oxidized precursors. Here the authors show that the daytime reaction of hydroxyl radicals with α- and β-pinene is a greater source of highly-oxidized products than previously assumed.

173 citations

Journal ArticleDOI
19 Feb 2010-Science
TL;DR: Advances at the interface between atmospheric and turbulence research are helping to elucidate fundamental properties of clouds, yet understanding of cloud processes has advanced enormously, yet some of the basic questions are still not answered.
Abstract: Just over 50 years ago, Henry Houghton published an essay in Science entitled “Cloud physics: Not all questions about nucleation, growth, and precipitation of water particles are yet answered” ( 1 ) Since then, understanding of cloud processes has advanced enormously, yet we still face some of the basic questions Houghton drew attention to The interest in finding the answers, however, has steadily increased, largely because clouds are a primary source of uncertainty in projections of future climate ( 2 ) Why is our understanding of cloud processes still so inadequate, and what are the prospects for the future?

167 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed existing knowledge with regard to organic aerosol (OA) of importance for global climate modelling and defined critical gaps needed to reduce the involved uncertainties, and synthesized the information to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosols.
Abstract: The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies.

2,863 citations

Journal ArticleDOI
TL;DR: The optical properties of light-absorbing, carbonaceous substance often called "soot", "black carbon", or "carbon black" have been the subject of some debate as discussed by the authors.
Abstract: The optical properties of the light-absorbing, carbonaceous substance often called “soot,” “black carbon,” or “carbon black" have been the subject of some debate. These properties are necessary to model how aerosols affect climate, and our review is targeted specifically for that application. We recommend the term light-absorbing carbon to avoid conflict with operationally based definitions. Absorptive properties depend on molecular form, particularly the size of sp 2-bonded clusters. Freshly-generated particles should be represented as aggregates, and their absorption is like that of particles small relative to the wavelength. Previous compendia have yielded a wide range of values for both refractive indices and absorption cross section. The absorptive properties of light-absorbing carbon are not as variable as is commonly believed. Our tabulation suggests a mass-normalized absorption cross section of 7.5 ± 1.2 m2/g at 550 nm for uncoated particles. We recommend a narrow range of refractive indices for s...

2,312 citations

01 Dec 2006
TL;DR: This paper showed that reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise, and a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products.
Abstract: [1] The atmospheric chemistry of volatile organic compounds (VOCs) in urban areas results in the formation of ‘photochemical smog’, including secondary organic aerosol (SOA). State-of-the-art SOA models parameterize the results of simulation chamber experiments that bracket the conditions found in the polluted urban atmosphere. Here we show that in the real urban atmosphere reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise. Contrary to current belief, a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products. Global models deem AVOCs a very minor contributor to SOA compared to biogenic VOCs (BVOCs). If our results are extrapolated to other urban areas, AVOCs could be responsible for additional 3–25 Tg yr−1 SOA production globally, and cause up to −0.1 W m−2 additional top-of-the-atmosphere radiative cooling.

947 citations

Journal ArticleDOI
TL;DR: In this paper, the ice nucleation active surface site (INAS) density is discussed as a simple and empirical normalized measure for ice nucleization activity, and the authors compare the results obtained with different methodologies.
Abstract: . A small subset of the atmospheric aerosol population has the ability to induce ice formation at conditions under which ice would not form without them (heterogeneous ice nucleation). While no closed theoretical description of this process and the requirements for good ice nuclei is available, numerous studies have attempted to quantify the ice nucleation ability of different particles empirically in laboratory experiments. In this article, an overview of these results is provided. Ice nucleation "onset" conditions for various mineral dust, soot, biological, organic and ammonium sulfate particles are summarized. Typical temperature-supersaturation regions can be identified for the "onset" of ice nucleation of these different particle types, but the various particle sizes and activated fractions reported in different studies have to be taken into account when comparing results obtained with different methodologies. When intercomparing only data obtained under the same conditions, it is found that dust mineralogy is not a consistent predictor of higher or lower ice nucleation ability. However, the broad majority of studies agrees on a reduction of deposition nucleation by various coatings on mineral dust. The ice nucleation active surface site (INAS) density is discussed as a simple and empirical normalized measure for ice nucleation activity. For most immersion and condensation freezing measurements on mineral dust, estimates of the temperature-dependent INAS density agree within about two orders of magnitude. For deposition nucleation on dust, the spread is significantly larger, but a general trend of increasing INAS densities with increasing supersaturation is found. For soot, the presently available results are divergent. Estimated average INAS densities are high for ice-nucleation active bacteria at high subzero temperatures. At the same time, it is shown that INAS densities of some other biological aerosols, like certain pollen grains, fungal spores and diatoms, tend to be similar to those of dust. These particles may owe their high ice nucleation onsets to their large sizes. Surface-area-dependent parameterizations of heterogeneous ice nucleation are discussed. For immersion freezing on mineral dust, fitted INAS densities are available, but should not be used outside the temperature interval of the data they were based on. Classical nucleation theory, if employed with only one fitted contact angle, does not reproduce the observed temperature dependence for immersion nucleation, the temperature and supersaturation dependence for deposition nucleation, and the time dependence of ice nucleation. Formulations of classical nucleation theory with distributions of contact angles offer possibilities to overcome these weaknesses.

946 citations

Journal ArticleDOI
TL;DR: Nucleation and Growth of Nanoparticles in the Atmosphere Renyi Zhang,* Alexei Khalizov, Lin Wang, Min Hu, and Wen Xu.
Abstract: Nucleation and Growth of Nanoparticles in the Atmosphere Renyi Zhang,* Alexei Khalizov, Lin Wang, Min Hu, and Wen Xu Department of Atmospheric Sciences andDepartment of Chemistry, Center for Atmospheric Chemistry and Environment, Texas A&M University, College Station, Texas 77843, United States Department of Environmental Science & Engineering and Institute of Global Environment Change Research, Fudan University, Shanghai 200433, China State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China

920 citations