scispace - formally typeset
Search or ask a question
Author

Frank T. Manheim

Bio: Frank T. Manheim is an academic researcher from George Mason University. The author has contributed to research in topics: Ferromanganese & Continental shelf. The author has an hindex of 30, co-authored 85 publications receiving 3263 citations. Previous affiliations of Frank T. Manheim include University of South Florida St. Petersburg & United States Geological Survey.


Papers
More filters
Book ChapterDOI
19 Oct 2017
TL;DR: Co-rich Fe-Mn crusts occur throughout the Pacific on seamounts, ridges, and plateaus where currents have kept the rocks swept clean of sediments at least intermittently for millions of years.
Abstract: Co-rich Fe-Mn crusts occur throughout the Pacific on seamounts, ridges, and plateaus where currents have kept the rocks swept clean of sediments at least intermittently for millions of years. Crusts precipitate out of cold ambient sea water onto hard-rock substrates forming pavements up to 250 mm thick. Crusts are important as a potential resource for Co, Ni, Pt, Mn, Tl, Te, and other metals, as well as for the paleoclimate signals stored in their stratigraphic layers. Crusts form at water depths of about 400 to 4000 m, with the thickest and most Co-rich crusts occurring at depths of about 800 to 2500 m, which may vary on a regional scale. Gravity processes, sediment cover, submerged and emergent reefs, and currents control the distribution and thickness of crusts on seamounts. Crusts occur on a variety of substrate rocks that generally decrease in the order, breccia, basalt, phosphorite, limestone, hyaloclastite, and mudstone. Because of this wide variety of substrate types, crusts are difficult to distinguish from the substrate using remotely sensed data, such as geophysical measurements, but are generally weaker and lighter-weight than the substrate. Crusts can be distinguished from the substrates, however, by their much higher gamma radiation levels. The mean dry bulk density of crusts is 1.3 g/cm3, the mean porosity is 60%, and the mean surface area is extremely high, 300 m2/g. Crusts generally grow at rates of 1 to 10 mm/Ma. Crust surfaces are botryoidal, which may be modified to a variety of forms by current erosion. In cross-section, crusts are generally layered, with individual layers displaying massive, botryoidal, laminated, columnar, or mottled textures. Characteristic layering is persistent regionally in the Pacific. Crusts are composed of ferruginous vernadite (δ-MnO2) and X-ray amorphous Fe oxyhydroxide, with moderate amounts of carbonate fluorapatite (CFA) in thick crusts and minor amounts of quartz and feldspar in most crusts. Elements most commonly associated with the vernadite phase include Mn, Co, Ni, Cd, and Mo, whereas those most commonly associated with Fe oxyhydroxide are Fe and As. Detrital phases are represented by Si, Al, K, Ti, Cr, Mg, Fe, and Na; the CFA phase by Ca, P, Sr, Y, and CO2; and a residual biogenic phase by Ba, Sr, Ce, Cu, V, Ca, and Mg. Crusts contain Co contents up to about 2.3%, Ni to 1%, and Pt to 3 ppm, with mean Fe/Mn ratios of 0.6 to 1.3. Fe/Mn decreases, whereas Co, Ni, Ti, and Pt increase in central Pacific crusts and Fe/Mn, Si, and Al increase in continental margin crusts and in crusts with proximity to west Pacific volcanic arcs. Vernadite and CFA-related elements decrease, whereas Fe, Cu, and detrital-related elements increase with increasing water depth of crust occurrence. Cobalt, Ce, Tl, and maybe also Ti, Pb, and Pt are strongly concentrated in crusts over other metals because of oxidation reactions. Total rare earth elements (REEs) commonly vary between 0.1% and 0.3% and are derived from sea water along with other hydrogenetic elements, Co, Mn, Ni, etc. Platinum, Rh, Ir, and some Ru in crusts are also derived from sea water, whereas Pd and the remainder of the Ru derive from detrital minerals. The older parts of thick crusts were phosphatized during at least two global phosphogenic events during the Tertiary, which mobilized and redistributed elements in those parts of the crusts. 240Silicon, Fe, Al, Th, Ti, Co, Mn, Pb, and U are commonly depleted, whereas Ni, Cu, Zn, Y, REEs, Sr, and Pt are commonly enriched in phosphatized layers compared to younger nonphosphatized layers. The dominant controls on the concentration of elements in crusts include the concentration of metals in sea water and their ratios, colloid surface charge, types of complexing agents, surface area, and growth rates. Crusts act as closed systems with regard to the isotopic ratios of Be, Nd, Pb, Hf, Os, and U-series, which in part have been used to date crusts and in part used as isotopic tracers of paleoceanographic and paleoclimatic conditions. Those tracers are especially useful in delineating temporal changes in deep-ocean circulation. Research and development on the technology of mining crusts are only in their infancy. Detailed maps of crust deposits and a better understanding of small-scale seamount topography are required to design the most appropriate mining equipment.

277 citations

Journal ArticleDOI
TL;DR: For example, the mean Fe/Mn ratios vary from about 24 000 (up to 58% elemental Fe) for hydrothermal seamount ironstones to about 0.001 (Up to 52% Mn) for Hydrothermal stratabound manganese oxides from active volcanic arcs as discussed by the authors.
Abstract: Abstract Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. Iron and manganese deposits occur in five forms: nodules, crusts, cements, mounds and sediment-hosted stratabound layers. Seafloor oxides show a wide range of compositions from nearly pure iron to nearly pure manganese end members. Fe/Mn ratios vary from about 24 000 (up to 58% elemental Fe) for hydrothermal seamount ironstones to about 0.001 (up to 52% Mn) for hydrothermal stratabound manganese oxides from active volcanic arcs. Hydrogenetic Fe-Mn crusts that occur on most seamounts in the ocean basins have a mean Fe/Mn ratio of 0.7 for open-ocean seamount crusts and 1.2 for continental margin seamount crusts. Fe-Mn nodules of potential economic interest from the Clarion-Clipperton Zone have a mean Fe/Mn ratio of 0.3, whereas the mean ratio for nodules from elsewhere in the Pacific is about 0.7. Crusts are enriched in Co, Ni and Pt and nodules in Cu and Ni, and both have significant concentrations of Pb, Zn, Ba, Mo, V and other elements. In contrast, hydrothermal deposits commonly contain only minor trace metal contents, although there are many exceptions, for example, with Ni contents up to 0.66%, Cr to 1.2%, and Zn to 1.4%. Chondrite-normalized REE patterns generally show a positive Ce anomaly and abundant ΣREEs for hydrogenetic and mixed hydrogenetic-diagenetic deposits, whereas the Ce anomaly is negative for hydrothermal deposits and ΣREE contents are low. However, the Ce anomaly in crusts may vary from strongly positive in East Pacific crusts to slightly negative in West Pacific crusts, which may reflect the redox conditions of seawater. The concentration of elements in hydrogenetic Fe-Mn crusts depends on a wide variety of water column and crust surface characteristics, whereas concentration of elements in hydrothermal oxide deposits depends of the intensity of leaching, rock types leached, and precipitation of sulphides at depth in the hydrothermal system.

235 citations

Journal ArticleDOI
TL;DR: Sedimentary iron and heavy-metal deposits of undetermined size have been found in the middle of the Red Sea some 2000 meters below the surface of the sea (Fig. 1). This discovery has been made from the Research Vessel Atlantis II, which is still at sea engaged in a series of oceanographic investigations which ultimately will end in November 1965, after the ship has circumnavigated the globe.

192 citations

Journal ArticleDOI
02 Nov 1979-Science
TL;DR: Pore fluid studies showed that relatively fresh to brackish water occurs beneath much of the Atlantic continental shelf, whereas increases in salinity off Georgla and beneath the Florida-Hatteras slope suggest buried evaporitic strata.
Abstract: The first broad program of scientific shallow drilling on the U.S. Atlantic continental shelf has delineated rocks of Pleistocene to Late Cretaceous age, including phosphoritic Miocene strata, widespread Eocene carbonate deposits that serve as reflective seismic markers, and several regional unconformities. Two sites, off Maryland and New Jersey, showed light hydrocarbon gases having affinity to mature petroleum. Pore fluid studies showed that relatively fresh to brackish water occurs beneath much of the Atlantic continental shelf, whereas increases in salinity off Georgla and beneath the Florida-Hatteras slope suggest buried evaporitic strata. The sediment cores showed engineering properties that range from good foundation strength to a potential for severe loss of strength through interaction between sediments and man-made structures.

189 citations

Journal ArticleDOI
01 Sep 1988-Nature
TL;DR: In this paper, the authors present maps of cobalt concentration and inferred accumulation rate of ferromanganese crusts from the Pacific Ocean, and propose an algorithm inversely relating cobalt content and crust growth rate with only indirect recourse to radioactivity-based dating methods.
Abstract: Ferromanganese oxide crusts, which accumulate on unsedimented surfaces in the open ocean1–6, derive most of their metal content from dissolved and particulate matter in ambient bottom water7,8, in proportions modified by the variable scavenging efficiency of the oxide phase for susceptible ions9. They differ in this respect from abyssal nodules, much of whose metals are remobilized from host sediments. Here we present maps of cobalt concentration and inferred accumulation rate of ferromanganese crusts from the Pacific Ocean. We propose that depletion of cobalt in Pacific crusts measures the location and intensity of submarine hydrothermal discharge. Use of the 'cobalt chronometer', an algorithm inversely relating cobalt content and crust growth rate, permits mapping of the accumulation rate of ferromanganese crusts with only indirect recourse to radioactivity-based dating methods. These maps show that crusts in hydrothermal areas grow from two to more than four orders of magnitude faster than in the Central Pacific Ocean. Cobalt-enriched crusts are found where water masses are most isolated from continental-coastal and hydrothermal sources of metals, now and in the past. This relationship can resolve the problem of cobalt enrichment in crusts without recourse to hypotheses invoking special cobalt sources or enrichment mechanisms.

167 citations


Cited by
More filters
Book
01 Jun 1989
TL;DR: The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities.
Abstract: The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities. Broad interrelationships among these processes and their effects can be discerned by application of principles of chemical thermodynamics. Some of the processes of solution or precipitation of minerals can be closely evaluated by means of principles of chemical equilibrium, including the law of mass action and the Nernst equation. Other processes are irreversible and require consideration of reaction mechanisms and rates. The chemical composition of the crustal rocks of the Earth and the composition of the ocean and the atmosphere are significant in evaluating sources of solutes in natural freshwater. The ways in which solutes are taken up or precipitated and the amounts present in solution are influenced by many environmental factors, especially climate, structure and position of rock strata, and biochemical effects associated with life cycles of plants and animals, both microscopic and macroscopic. Taken together and in application with the further influence of the general circulation of all water in the hydrologic cycle, the chemical principles and environmental factors form a basis for the developing science of natural-water chemistry. Fundamental data used in the determination of water quality are obtained by the chemical analysis of water samples in the laboratory or onsite sensing of chemical properties in the field. Sampling is complicated by changes in the composition of moving water and by the effects of particulate suspended material. Some constituents are unstable and require onsite determination or sample preservation. Most of the constituents determined are reported in gravimetric units, usually milligrams per liter or milliequivalents

6,271 citations

Journal ArticleDOI
TL;DR: The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj∗ by as mentioned in this paper, where θ is the tortuosity of the bulk sediment and a constant close to one.

2,648 citations

Journal ArticleDOI
TL;DR: In this paper, the global major element variations can be explained by ∼8-20% melting of the mantle at associated mean pressures of 5-16 kbar, and the lowest extents of melting occur at shallowest depths in the mantle and are associated with the deepest ocean ridges.
Abstract: Regional averages of the major element chemistry of ocean ridge basalts, corrected for low-pressure fractionation, correlate with regional averages of axial depth for the global system of ocean ridges, including hot spots, cold spots, and back arc basins, as well as “normal” ocean ridges. Quantitative consideration of the variations of each major element during melting of the mantle suggests that the global major element variations can be accounted for by ∼8–20% melting of the mantle at associated mean pressures of 5–16 kbar. The lowest extents of melting occur at shallowest depths in the mantle and are associated with the deepest ocean ridges. Calculated mean primary magmas show a range in composition from 10 to 15 wt % MgO, and the primary magma compositions correlate with depth. Data for Sm, Yb, Sc, and Ni are consistent with the major elements, but highly incompatible elements show more complicated behavior. In addition, some hot spots have anomalous chemistry, suggesting major element heterogeneity. Thermal modeling of mantle ascending adiabatically beneath the ridge is consistent with the chemical data and melting calculations, provided the melt is tapped from throughout the ascending mantle column. The thermal modeling independently predicts the observed relationships among basalt chemistry, ridge depth, and crustal thickness resulting from temperature variations in the mantle. Beneath the shallowest and deepest ridge axes, temperature differences of approximately 250°C in the subsolidus mantle are required to account for the global systematics.

1,550 citations

Journal ArticleDOI
TL;DR: In this paper, a single extraction of silica into 2 M Na2CO3 solution at 85°C for 5 h was used to determine the biogenic opal content in marine sediments.

1,186 citations

Journal ArticleDOI
TL;DR: For example, the accumulation of biogenic silica in estuarine deposits removes a maximum of 8 × 1014g SiO2/yr or 10% of the dissolved silica input to the oceans as mentioned in this paper.

1,128 citations