scispace - formally typeset
Search or ask a question
Author

Frank Uhlmann

Other affiliations: Cancer Research UK, Lincoln's Inn, London Research Institute  ...read more
Bio: Frank Uhlmann is an academic researcher from Francis Crick Institute. The author has contributed to research in topics: Cohesin & Establishment of sister chromatid cohesion. The author has an hindex of 58, co-authored 135 publications receiving 13159 citations. Previous affiliations of Frank Uhlmann include Cancer Research UK & Lincoln's Inn.


Papers
More filters
Journal ArticleDOI
01 Jul 1999-Nature
TL;DR: It is shown that Esp1 causes the dissociation of Scc1 from chromosomes by stimulating its cleavage by proteolysis, and a mutant SCC1 is described that is resistant to Esp1-dependent cleavage and which blocks both sister-chromatid separation and the dissociations from chromosomes.
Abstract: Cohesion between sister chromatids is established during DNA replication and depends on a multiprotein complex called cohesin Attachment of sister kinetochores to the mitotic spindle during mitosis generates forces that would immediately split sister chromatids were it not opposed by cohesion Cohesion is essential for the alignment of chromosomes in metaphase but must be abolished for sister separation to start during anaphase In the budding yeast Saccharomyces cerevisiae, loss of sister-chromatid cohesion depends on a separating protein (separin) called Esp1 and is accompanied by dissociation from the chromosomes of the cohesion subunit Scc1 Here we show that Esp1 causes the dissociation of Scc1 from chromosomes by stimulating its cleavage by proteolysis A mutant Scc1 is described that is resistant to Esp1-dependent cleavage and which blocks both sister-chromatid separation and the dissociation of Scc1 from chromosomes The evolutionary conservation of separins indicates that the proteolytic cleavage of cohesion proteins might be a general mechanism for triggering anaphase

1,021 citations

Journal ArticleDOI
27 Oct 2000-Cell
TL;DR: It is shown here that separin is a cysteine protease related to caspases that alone can cleave Sccl in vitro and depends on a conserved protein called separin for sister chromatid separation.

867 citations

Journal ArticleDOI
TL;DR: This and a previous study have identified six proteins essential for establishing or maintaining sister chromatid cohesion, four of which are subunits of a 'Cohesin' complex that binds chromosomes from late G1 until the onset of anaphase.
Abstract: Sister chromatid cohesion is crucial for chromosome segregation during mitosis. Loss of cohesion very possibly triggers sister separation at the metaphase φι anaphase transition. This process depends on the destruction of anaphase inhibitory proteins like Pds1p (Cut2p), which is thought to liberate a sister-separating protein Esp1p (Cut1p). By looking for mutants that separate sister centromeres in the presence of Pds1p, this and a previous study have identified six proteins essential for establishing or maintaining sister chromatid cohesion. Four of these proteins, Scc1p, Scc3p, Smc1p, and Smc3p, are subunits of a ‘Cohesin’ complex that binds chromosomes from late G1 until the onset of anaphase. The fifth protein, Scc2p, is not a stoichiometric Cohesin subunit but it is required for Cohesin’s association with chromosomes. The sixth protein, Eco1p(Ctf7p), is not a Cohesin subunit. It is necessary for the establishment of cohesion during DNA replication but not for its maintenance during G2 and M phases.

638 citations

Journal ArticleDOI
29 Jul 2004-Nature
TL;DR: High resolution analysis of cohesin association along budding yeast chromosomes III–VI finds that active transcription positions cohesIn at these sites, not the underlying DNA sequence, is found, suggesting that it is a common feature of eukaryotic chromosomes.
Abstract: Sister chromatids, the products of eukaryotic DNA replication, are held together by the chromosomal cohesin complex after their synthesis. This allows the spindle in mitosis to recognize pairs of replication products for segregation into opposite directions. Cohesin forms large protein rings that may bind DNA strands by encircling them, but the characterization of cohesin binding to chromosomes in vivo has remained vague. We have performed high resolution analysis of cohesin association along budding yeast chromosomes III-VI. Cohesin localizes almost exclusively between genes that are transcribed in converging directions. We find that active transcription positions cohesin at these sites, not the underlying DNA sequence. Cohesin is initially loaded onto chromosomes at separate places, marked by the Scc2/Scc4 cohesin loading complex, from where it appears to slide to its more permanent locations. But even after sister chromatid cohesion is established, changes in transcription lead to repositioning of cohesin. Thus the sites of cohesin binding and therefore probably sister chromatid cohesion, a key architectural feature of mitotic chromosomes, display surprising flexibility. Cohesin localization to places of convergent transcription is conserved in fission yeast, suggesting that it is a common feature of eukaryotic chromosomes.

598 citations

Journal ArticleDOI
25 Jul 2008-Science
TL;DR: The results indicate that Eco1 modifies cohesin to stabilize sister chromatid cohesion in parallel with a cohesion establishment reaction that is in principle Eco1-independent.
Abstract: Replicated chromosomes are held together by the chromosomal cohesin complex from the time of their synthesis in S phase onward. This requires the replication fork–associated acetyl transferase Eco1, but Eco19s mechanism of action is not known. We identified spontaneous suppressors of the thermosensitive eco1-1 allele in budding yeast. An acetylation-mimicking mutation of a conserved lysine in cohesin9s Smc3 subunit makes Eco1 dispensable for cell growth, and we show that Smc3 is acetylated in an Eco1-dependent manner during DNA replication to promote sister chromatid cohesion. A second set of eco1-1 suppressors inactivate the budding yeast ortholog of the cohesin destabilizer Wapl. Our results indicate that Eco1 modifies cohesin to stabilize sister chromatid cohesion in parallel with a cohesion establishment reaction that is in principle Eco1-independent.

505 citations


Cited by
More filters
Journal ArticleDOI
28 Aug 1998-Science
TL;DR: This work has shown that understanding caspase regulation is intimately linked to the ability to rationally manipulate apoptosis for therapeutic gain.
Abstract: Apoptosis, an evolutionarily conserved form of cell suicide, requires specialized machinery. The central component of this machinery is a proteolytic system involving a family of proteases called caspases. These enzymes participate in a cascade that is triggered in response to proapoptotic signals and culminates in cleavage of a set of proteins, resulting in disassembly of the cell. Understanding caspase regulation is intimately linked to the ability to rationally manipulate apoptosis for therapeutic gain.

6,924 citations

Journal Article
TL;DR: The cloning of cDNAs encoding glutamate receptor subunits, which occurred mainly between 1989 and 1992, stimulated the development of ionotropic glutamate receptors in the brain.
Abstract: The ionotropic glutamate receptors are ligand-gated ion channels that mediate the vast majority of excitatory neurotransmission in the brain. The cloning of cDNAs encoding glutamate receptor subunits, which occurred mainly between 1989 and 1992 ([Hollmann and Heinemann, 1994][1]), stimulated this

4,112 citations

Journal ArticleDOI
TL;DR: It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease.
Abstract: Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, conside...

3,990 citations

Journal ArticleDOI
10 Jan 2002-Nature
TL;DR: Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two-hybrid studies.
Abstract: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry

3,674 citations

Journal ArticleDOI
TL;DR: Genetic evidence suggests that tumour cells may also require specific interphase CDKs for proliferation, and selective CDK inhibition may provide therapeutic benefit against certain human neoplasias.
Abstract: Tumour-associated cell cycle defects are often mediated by alterations in cyclin-dependent kinase (CDK) activity. Misregulated CDKs induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, mammalian CDKs are essential for driving each cell cycle phase, so therapeutic strategies that block CDK activity are unlikely to selectively target tumour cells. However, recent genetic evidence has revealed that, whereas CDK1 is required for the cell cycle, interphase CDKs are only essential for proliferation of specialized cells. Emerging evidence suggests that tumour cells may also require specific interphase CDKs for proliferation. Thus, selective CDK inhibition may provide therapeutic benefit against certain human neoplasias.

3,146 citations