scispace - formally typeset
Search or ask a question
Author

Frank Verstraete

Bio: Frank Verstraete is an academic researcher from Ghent University. The author has contributed to research in topics: Quantum entanglement & Matrix product state. The author has an hindex of 82, co-authored 301 publications receiving 26128 citations. Previous affiliations of Frank Verstraete include Perimeter Institute for Theoretical Physics & Vienna University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review recent developments in the theoretical understanding and numerical implementation of variational renormalization group methods using matrix product states and projected entangled pair states, and present a survey of the literature.
Abstract: This article reviews recent developments in the theoretical understanding and the numerical implementation of variational renormalization group methods using matrix product states and projected entangled pair states.

1,522 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that dissipation can be used to engineer a large variety of strongly correlated states in steady state, including all stabilizer codes, matrix product states, and their generalization to higher dimensions.
Abstract: In quantum information science, dissipation is commonly viewed as an adverse effect that destroys information through decoherence. But theoretical work shows that dissipation can be used to drive quantum systems to a desired state, and therefore might serve as a resource in quantum computations. The strongest adversary in quantum information science is decoherence, which arises owing to the coupling of a system with its environment1. The induced dissipation tends to destroy and wash out the interesting quantum effects that give rise to the power of quantum computation2, cryptography2 and simulation3. Whereas such a statement is true for many forms of dissipation, we show here that dissipation can also have exactly the opposite effect: it can be a fully fledged resource for universal quantum computation without any coherent dynamics needed to complement it. The coupling to the environment drives the system to a steady state where the outcome of the computation is encoded. In a similar vein, we show that dissipation can be used to engineer a large variety of strongly correlated states in steady state, including all stabilizer codes, matrix product states4, and their generalization to higher dimensions5.

1,237 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent developments in the theoretical understanding and numerical implementation of variational renormalization group methods using matrix product states and projected entangled pair states, and present a survey of the literature.
Abstract: This article reviews recent developments in the theoretical understanding and the numerical implementation of variational renormalization group methods using matrix product states and projected entangled pair states.

967 citations

Journal ArticleDOI
TL;DR: The freedom in representations with and without translation symmetry are determined, derive respective canonical forms and provide efficient methods for obtaining them.
Abstract: This work gives a detailed investigation of matrix product state (MPS) representations for pure multipartite quantum states. We determine the freedom in representations with and without translation symmetry, derive respective canonical forms and provide efficient methods for obtaining them. Results on frustration free Hamiltonians and the generation of MPS are extended, and the use of the MPS-representation for classical simulations of quantum systems is discussed.

942 citations

Journal ArticleDOI
TL;DR: It is shown how to simulate numerically the evolution of 1D quantum systems under dissipation as well as in thermal equilibrium.
Abstract: We show how to simulate numerically the evolution of 1D quantum systems under dissipation as well as in thermal equilibrium. The method applies to both finite and inhomogeneous systems, and it is based on two ideas: (a) a representation for density operators which extends that of matrix product states to mixed states; (b) an algorithm to approximate the evolution (in real or imaginary time) of matrix product states which is variational.

855 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
18 Jun 2008-Nature
TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Abstract: Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.

5,003 citations