Author

# Frank Weinhold

Other affiliations: Stanford University, Rutgers University, Ames Research Center ...read more

Bio: Frank Weinhold is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Natural bond orbital & Ab initio. The author has an hindex of 67, co-authored 233 publications receiving 51430 citations. Previous affiliations of Frank Weinhold include Stanford University & Rutgers University.

##### Papers published on a yearly basis

##### Papers

More filters

••

15,091 citations

••

TL;DR: In this paper, a method of "natural population analysis" was developed to calculate atomic charges and orbital populations of molecular wave functions in general atomic orbital basis sets, which seems to exhibit improved numerical stability and to better describe the electron distribution in compounds of high ionic character.

Abstract: A method of ‘‘natural population analysis’’ has been developed to calculate atomic charges and orbital populations of molecular wave functions in general atomic orbital basis sets. The natural analysis is an alternative to conventional Mulliken population analysis, and seems to exhibit improved numerical stability and to better describe the electron distribution in compounds of high ionic character, such as those containing metal atoms. We calculated ab initio SCF‐MO wave functions for compounds of type CH3X and LiX (X=F, OH, NH2, CH3, BH2, BeH, Li, H) in a variety of basis sets to illustrate the generality of the method, and to compare the natural populations with results of Mulliken analysis, density integration, and empirical measures of ionic character. Natural populations are found to give a satisfactory description of these molecules, providing a unified treatment of covalent and extreme ionic limits at modest computational cost.

8,332 citations

••

TL;DR: In this paper, a method for extracting a unique set of atomic hybrids and bond orbitals for a given molecule, thereby constructing its Lewis structure in an a priori manner, is described.

Abstract: From the information contained in the (exact or approximate) first-order density matrix, we describe a method for extracting a unique set of atomic hybrids and bond orbitals for a given molecule, thereby constructing its “Lewis structure” in an a priori manner. These natural hybrids are optimal in a certain sense, are efficiently computed, and seem to agree well with chemical intuition (as summarized, for example, in Bent’s Rule) and with hybrids obtained by other procedures. Using simple INDO-SCF-MO wave functions, we give applications of the natural hybrid orbital analysis to molecules exhibiting a variety of bonding features, including lone pairs, multiple bonds, strained rings, and “bent bonds”, multiple resonance structures, hydrogen bonds, and three-center bonds. Three examples are described in greater detail: (i) “orbital following” during ammonia umbrella inversion, (ii) the dimerization of water molecules, and (iii) the hydrogen-bridged bonds of diborane.

4,338 citations

••

TL;DR: In this paper, the authors carried out a natural bond orbital analysis of hydrogen bonding in the water dimer for the near Hartree-Fock wave function of Popkie, Kistenmacher, and Clementi, extending previous studies based on smaller basis sets and less realistic geometry.

Abstract: We have carried out a natural bond orbital analysis of hydrogen bonding in the water dimer for the near‐Hartree–Fock wave function of Popkie, Kistenmacher, and Clementi, extending previous studies based on smaller basis sets and less realistic geometry. We find that interactions which may properly be described as ‘‘charge transfer’’ (particularly the n‐σ*OH interaction along the H‐bond axis) play a critical role in the formation of the hydrogen bond, and without these interactions the water dimer would be 3–5 kcal/mol repulsive at the observed equilibrium distance. We discuss this result in relationship to Klemperer’s general picture of the bonding in van der Waals molecules, and to previous theoretical analyses of hydrogen bonding by the method of Kitaura and Morokuma.

2,603 citations

01 Jan 2013

TL;DR: In this article, the authors carried out a natural bond orbital analysis of hydrogen bonding in the water dimer for the near Hartree-Fock wave function of Popkie, Kistenmacher, and Clementi, extending previous studies based on smaller basis sets and less realistic geometry.

Abstract: We have carried out a natural bond orbital analysis of hydrogen bonding in the water dimer for the near‐Hartree–Fock wave function of Popkie, Kistenmacher, and Clementi, extending previous studies based on smaller basis sets and less realistic geometry. We find that interactions which may properly be described as ‘‘charge transfer’’ (particularly the n‐σ*OH interaction along the H‐bond axis) play a critical role in the formation of the hydrogen bond, and without these interactions the water dimer would be 3–5 kcal/mol repulsive at the observed equilibrium distance. We discuss this result in relationship to Klemperer’s general picture of the bonding in van der Waals molecules, and to previous theoretical analyses of hydrogen bonding by the method of Kitaura and Morokuma.

2,043 citations

##### Cited by

More filters

28 Jul 2005

TL;DR: PfPMP1）与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用，在黏附及免疫逃避中起关键的作�ly.

Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1（PfPMP1）与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用，在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员，通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

••

TL;DR: A description of the ab initio quantum chemistry package GAMESS, which can be treated with wave functions ranging from the simplest closed‐shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication.

Abstract: A description of the ab initio quantum chemistry package GAMESS is presented. Chemical systems containing atoms through radon can be treated with wave functions ranging from the simplest closed-shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication. Emphasis is given to novel features of the program. The parallelization strategy used in the RHF, ROHF, UHF, and GVB sections of the program is described, and detailed speecup results are given. Parallel calculations can be run on ordinary workstations as well as dedicated parallel machines. © John Wiley & Sons, Inc.

18,546 citations

••

15,091 citations

••

[...]

TL;DR: The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.

Abstract: We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF-typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation-strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time-dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

8,490 citations

••

TL;DR: In this paper, a method of "natural population analysis" was developed to calculate atomic charges and orbital populations of molecular wave functions in general atomic orbital basis sets, which seems to exhibit improved numerical stability and to better describe the electron distribution in compounds of high ionic character.

Abstract: A method of ‘‘natural population analysis’’ has been developed to calculate atomic charges and orbital populations of molecular wave functions in general atomic orbital basis sets. The natural analysis is an alternative to conventional Mulliken population analysis, and seems to exhibit improved numerical stability and to better describe the electron distribution in compounds of high ionic character, such as those containing metal atoms. We calculated ab initio SCF‐MO wave functions for compounds of type CH3X and LiX (X=F, OH, NH2, CH3, BH2, BeH, Li, H) in a variety of basis sets to illustrate the generality of the method, and to compare the natural populations with results of Mulliken analysis, density integration, and empirical measures of ionic character. Natural populations are found to give a satisfactory description of these molecules, providing a unified treatment of covalent and extreme ionic limits at modest computational cost.

8,332 citations