scispace - formally typeset
F

Franklin Kim

Researcher at ShanghaiTech University

Publications -  53
Citations -  24146

Franklin Kim is an academic researcher from ShanghaiTech University. The author has contributed to research in topics: Graphene & Nanorod. The author has an hindex of 36, co-authored 51 publications receiving 22925 citations. Previous affiliations of Franklin Kim include University of California, Berkeley & Kyoto University.

Papers
More filters
Journal ArticleDOI

One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications

TL;DR: A comprehensive review of 1D nanostructures can be found in this article, where the authors provide a comprehensive overview of current research activities that concentrate on one-dimensional (1D) nanostructure (wires, rods, belts and tubes).
Journal ArticleDOI

Low-temperature wafer-scale production of ZnO nanowire arrays.

TL;DR: A low-temperature, large-scale, and versatile synthetic process is needed before ZnO nanowire arrays find realistic applications in solar energy conversion, light emission, and other promising areas, and the ease of commercial scale-up is presented.
Journal ArticleDOI

Langmuir-Blodgett assembly of graphite oxide single layers.

TL;DR: Single-layer graphite oxide can be viewed as an unconventional type of soft material and has recently been recognized as a promising material for composite and electronics applications and it is of both scientific curiosity and technical importance to know how these atomically thin sheets assemble.
Journal ArticleDOI

Graphene Oxide Sheets at Interfaces

TL;DR: It is reported that GO is an amphiphile with hydrophilic edges and a more hydrophobic basal plane, and the ease of its conversion to chemically modified graphene could enable new opportunities in solution processing of functional materials.
Journal ArticleDOI

Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy

TL;DR: In this article, the Langmuir−Blodgett technique was used to assemble monolayers (with areas over 20 cm2) of aligned silver nanowires that are ∼50 nm in diameter and 2−3 μm in length.