scispace - formally typeset
Search or ask a question
Author

Frans Dijkhuizen

Bio: Frans Dijkhuizen is an academic researcher from ABB Ltd. The author has contributed to research in topics: Ćuk converter & Buck–boost converter. The author has an hindex of 12, co-authored 30 publications receiving 1149 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the principle of modularity is used to derive the different multilevel voltage and current source converter topologies for high-power dc systems, where the derived converter cells are treated as building blocks and are contributing to the modularity of the system.
Abstract: In this paper, the principle of modularity is used to derive the different multilevel voltage and current source converter topologies. The paper is primarily focused on high-power applications and specifically on high-voltage dc systems. The derived converter cells are treated as building blocks and are contributing to the modularity of the system. By combining the different building blocks, i.e., the converter cells, a variety of voltage and current source modular multilevel converter topologies are derived and thoroughly discussed. Furthermore, by applying the modularity principle at the system level, various types of high-power converters are introduced. The modularity of the multilevel converters is studied in depth, and the challenges as well as the opportunities for high-power applications are illustrated.

883 citations

Proceedings ArticleDOI
17 Oct 2013
TL;DR: In this paper, an alternate five-level four-quadrant cascaded multilevel converter cell configuration was proposed, which compared to the other cell configurations, for dc fault current limitation, will be more compact and avoid the external dc breaker.
Abstract: Proposed here is an alternate Five-level four-quadrant cascaded multilevel converter cell configuration that compared to the other cell configurations, for dc fault current limitation, will be more compact and avoid the external dc breaker. Loss comparison on cells with dc fault blocking capability for the cascaded converter is also presented.

118 citations

Patent
30 Dec 2011
TL;DR: In this article, a voltage source converter based on a chain-link cell topology is presented, where the output voltage of the source converter is controlled by control signals applied to the cell modules.
Abstract: Voltage source converter based on a chain-link cell topology, said converter comprising one or more phases (L1, L2, L3), each of said phases comprising one or more series- connected chain- link cell modules connected to each other, an output voltage of said voltage source converter is controlled by control signals applied to said cell modules. In case of failure of a chain- link cell module that module is controlled, by said control signals, such that zero output voltage is provided at its output voltage AC terminal.

61 citations

Proceedings ArticleDOI
17 Oct 2013
TL;DR: In this article, a current source modular multilevel converter (MMC) is proposed for high voltage AC/DC power conversion applications, such as HVDC and FACTS.
Abstract: A current source modular multilevel converter (MMC) is proposed for high voltage AC/DC power conversion applications, such as HVDC and FACTS. Current source converters possess the advantage of short-circuit fault tolerance, which is a pivotal feature for grid applications. By partially following the circuit duality transformations, the proposed converter is derived from the well-known voltage source MMC. Inductor-based current source cells are connected in parallel and form a current source arm that can synthesize a desired current waveform. By adding a reduced-energy capacitor in parallel to each current source arm, these arms can be further connected in series, thereby allowing voltage scaling. By using fully controllable switches, the converter is capable of providing full control on its active and reactive power. Protection schemes against open-circuit failures inside the inductor cells are also proposed. Simulation results show the operation of the current source MMC and its capability of DC fault tolerance.

58 citations

Proceedings ArticleDOI
29 Oct 2015
TL;DR: In this paper, a new hybrid arm MMC is proposed to overcome the overvoltage problem while providing the benefits of: a lower number of cells, fewer switching devices and lower conduction losses.
Abstract: This paper analyzes the station-internal phase-to-ground fault in bipolar HVDC transmission systems. An overvoltage problem due to the existence of the bipolar cells in the modular multilevel converter (MMC) arms closer to the grounding pole are presented. Consequently, a new hybrid arm MMC is proposed to overcome the overvoltage problem while providing the benefits of: a lower number of cells, fewer switching devices and lower conduction losses. Guidelines are developed and confirmed by simulation results to determine the required number of cells to block the DC side fault.

54 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A general overview of the basics of operation of the MMC along with its control challenges are discussed, and a review of state-of-the-art control strategies and trends is presented as mentioned in this paper.
Abstract: The modular multilevel converter (MMC) has been a subject of increasing importance for medium/high-power energy conversion systems. Over the past few years, significant research has been done to address the technical challenges associated with the operation and control of the MMC. In this paper, a general overview of the basics of operation of the MMC along with its control challenges are discussed, and a review of state-of-the-art control strategies and trends is presented. Finally, the applications of the MMC and their challenges are highlighted.

1,765 citations

01 Jan 1992
TL;DR: In this paper, a multilevel commutation cell is introduced for high-voltage power conversion, which can be applied to either choppers or voltage-source inverters and generalized to any number of switches.
Abstract: The authors discuss high-voltage power conversion. Conventional series connection and three-level voltage source inverter techniques are reviewed and compared. A novel versatile multilevel commutation cell is introduced: it is shown that this topology is safer and more simple to control, and delivers purer output waveforms. The authors show how this technique can be applied to either choppers or voltage-source inverters and generalized to any number of switches.<>

1,202 citations

Journal ArticleDOI
TL;DR: In this article, the principle of modularity is used to derive the different multilevel voltage and current source converter topologies for high-power dc systems, where the derived converter cells are treated as building blocks and are contributing to the modularity of the system.
Abstract: In this paper, the principle of modularity is used to derive the different multilevel voltage and current source converter topologies. The paper is primarily focused on high-power applications and specifically on high-voltage dc systems. The derived converter cells are treated as building blocks and are contributing to the modularity of the system. By combining the different building blocks, i.e., the converter cells, a variety of voltage and current source modular multilevel converter topologies are derived and thoroughly discussed. Furthermore, by applying the modularity principle at the system level, various types of high-power converters are introduced. The modularity of the multilevel converters is studied in depth, and the challenges as well as the opportunities for high-power applications are illustrated.

883 citations

Journal ArticleDOI
TL;DR: The development of MMC circuit topologies and their mathematical models over the years are presented and the evolution and technical challenges of the classical and model predictive control methods are discussed.
Abstract: Modular multilevel converter (MMC) is one of the most promising topologies for medium to high-voltage high-power applications. The main features of MMC are modularity, voltage and power scalability, fault tolerant and transformer-less operation, and high-quality output waveforms. Over the past few years, several research studies are conducted to address the technical challenges associated with the operation and control of the MMC. This paper presents the development of MMC circuit topologies and their mathematical models over the years. Also, the evolution and technical challenges of the classical and model predictive control methods are discussed. Finally, the MMC applications and their future trends are presented.

404 citations

Journal ArticleDOI
TL;DR: In this article, two new modular multilevel converter (MMC) circuit configurations as well as a hybrid design methodology to embed the dc-fault-handling capability in the MMC-HVDC systems are proposed.
Abstract: The modular multilevel converter (MMC) has become the most promising converter technology for high-voltage direct current (HVDC) transmission systems. However, similar to any other voltage-sourced converter-based HVDC system, MMC-HVDC systems with the half-bridge submodules (SMs) lack the capability of handling dc-side short-circuit faults, which are of severe concern for overhead transmission lines. In this paper, two new SM circuit configurations as well as a hybrid design methodology to embed the dc-fault-handling capability in the MMC-HVDC systems are proposed. By combining the features of various SM configurations, the dc-fault current path through the freewheeling diodes is eliminated and the dc-fault current is enforced to zero. Several MMC configurations based on the proposed hybrid design method and various SM circuits, that is, the half-bridge, the full-bridge, the clamp-double, and the five-level cross-connected SMs, as well as the newly proposed unipolar-voltage full-bridge and three-level cross-connected SMs, are investigated and compared in terms of the dc-fault-handing capability, semiconductor power losses, and component requirements. The studies are carried out based on time-domain simulation in the PSCAD/EMTDC software environment for various SM configurations and dc-fault conditions. The reported study results demonstrate the proposed hybrid-designed MMC-HVDC system based on the combination of the half-bridge and the proposed SM circuits is the optimal design among all evaluated systems in terms of the dc-fault-handing capability, semiconductor power losses, and component requirements.

303 citations