scispace - formally typeset
Search or ask a question
Author

Franz Baader

Bio: Franz Baader is an academic researcher from Dresden University of Technology. The author has contributed to research in topics: Description logic & Decidability. The author has an hindex of 62, co-authored 334 publications receiving 24544 citations. Previous affiliations of Franz Baader include University of Erlangen-Nuremberg & Max Planck Society.


Papers
More filters
BookDOI
01 Jan 2003
TL;DR: The Description Logic Handbook as mentioned in this paper provides a thorough account of the subject, covering all aspects of research in this field, namely: theory, implementation, and applications, and can also be used for self-study or as a reference for knowledge representation and artificial intelligence courses.
Abstract: Description logics are embodied in several knowledge-based systems and are used to develop various real-life applications. Now in paperback, The Description Logic Handbook provides a thorough account of the subject, covering all aspects of research in this field, namely: theory, implementation, and applications. Its appeal will be broad, ranging from more theoretically oriented readers, to those with more practically oriented interests who need a sound and modern understanding of knowledge representation systems based on description logics. As well as general revision throughout the book, this new edition presents a new chapter on ontology languages for the semantic web, an area of great importance for the future development of the web. In sum, the book will serve as a unique resource for the subject, and can also be used for self-study or as a reference for knowledge representation and artificial intelligence courses.

5,644 citations

Book
01 Jan 1998
TL;DR: This chapter discusses abstract reduction systems, universal algebra, and Grobner bases and Buchberger's algorithm, and a bluffer's guide to ML Bibliography Index.
Abstract: Preface 1. Motivating examples 2. Abstract reduction systems 3. Universal algebra 4. Equational problems 5. Termination 6. Confluence 7. Completion 8. Grobner bases and Buchberger's algorithm 9. Combination problems 10. Equational unification 11. Extensions Appendix 1. Ordered sets Appendix 2. A bluffer's guide to ML Bibliography Index.

2,515 citations

Book
18 Nov 2009
TL;DR: This introduction presents the main motivations for the development of Description Logics as a formalism for representing knowledge, as well as some important basic notions underlying all systems that have been created in the DL tradition.
Abstract: This introduction presents the main motivations for the development of Description Logics (DLs) as a formalism for representing knowledge, as well as some important basic notions underlying all systems that have been created in the DL tradition. In addition, we provide the reader with an overview of the entire book and some guidelines for reading it. We first address the relationship between Description Logics and earlier semantic network and frame systems, which represent the original heritage of the field. We delve into some of the key problems encountered with the older efforts. Subsequently, we introduce the basic features of DL languages and related reasoning techniques. DL languages are then viewed as the core of knowledge representation systems, considering both the structure of a DL knowledge base and its associated reasoning services. The development of some implemented knowledge representation systems based on Description Logics and the first applications built with such systems are then reviewed. Finally, we address the relationship of Description Logics to other fields of Computer Science.We also discuss some extensions of the basic representation language machinery; these include features proposed for incorporation in the formalism that originally arose in implemented systems, and features proposed to cope with the needs of certain application domains.

1,966 citations

Proceedings Article
30 Jul 2005
TL;DR: This work identifies a set of expressive means that can be added to EL without sacrificing tractability, and shows that basically all other additions of typical DL constructors to EL with GCIs make subsumption intractable, and in most cases even EXPTIME-complete.
Abstract: Recently, it has been shown that the small description logic (DL) EL, which allows for conjunction and existential restrictions, has better algorithmic properties than its counterpart FL0, which allows for conjunction and value restrictions. Whereas the subsumption problem in FL0 becomes already intractable in the presence of acyclic TBoxes, it remains tractable in EL even with general concept inclusion axioms (GCIs). On the one hand, we extend the positive result for EL by identifying a set of expressive means that can be added to EL without sacrificing tractability. On the other hand, we show that basically all other additions of typical DL constructors to EL with GCIs make subsumption intractable, and in most cases even EXPTIME-complete. In addition, we show that subsumption in FL0 with GCIs is EXPTIME-complete.

1,207 citations

Book ChapterDOI
01 Jan 2003
TL;DR: This chapter provides an introduction to Description Logics as a formal language for representing knowledge and reasoning about it, covering syntax and semantics, and the basic constructors that are used in systems or have been introduced in the literature.
Abstract: This chapter provides an introduction to Description Logics as a formal language for representing knowledge and reasoning about it. It first gives a short overview of the ideas underlying Description Logics. Then it introduces syntax and semantics, covering the basic constructors that are used in systems or have been introduced in the literature, and the way these constructors can be used to build knowledge bases. Finally, it defines the typical inference problems, shows how they are interrelated, and describes different approaches for effectively solving these problems. Some of the topics that are only briefly mentioned in this chapter will be treated in more detail in subsequent chapters.

670 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Proceedings ArticleDOI
08 May 2007
TL;DR: YAGO as discussed by the authors is a light-weight and extensible ontology with high coverage and quality, which includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as HASONEPRIZE).
Abstract: We present YAGO, a light-weight and extensible ontology with high coverage and quality. YAGO builds on entities and relations and currently contains more than 1 million entities and 5 million facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as HASONEPRIZE). The facts have been automatically extracted from Wikipedia and unified with WordNet, using a carefully designed combination of rule-based and heuristic methods described in this paper. The resulting knowledge base is a major step beyond WordNet: in quality by adding knowledge about individuals like persons, organizations, products, etc. with their semantic relationships - and in quantity by increasing the number of facts by more than an order of magnitude. Our empirical evaluation of fact correctness shows an accuracy of about 95%. YAGO is based on a logically clean model, which is decidable, extensible, and compatible with RDFS. Finally, we show how YAGO can be further extended by state-of-the-art information extraction techniques.

3,710 citations

Journal ArticleDOI
TL;DR: Pellet is the first sound and complete OWL-DL reasoner with extensive support for reasoning with individuals, user-defined datatypes, and debugging support for ontologies.

2,790 citations

Proceedings ArticleDOI
03 Jun 2002
TL;DR: The tutorial is focused on some of the theoretical issues that are relevant for data integration: modeling a data integration application, processing queries in data integration, dealing with inconsistent data sources, and reasoning on queries.
Abstract: Data integration is the problem of combining data residing at different sources, and providing the user with a unified view of these data. The problem of designing data integration systems is important in current real world applications, and is characterized by a number of issues that are interesting from a theoretical point of view. This document presents on overview of the material to be presented in a tutorial on data integration. The tutorial is focused on some of the theoretical issues that are relevant for data integration. Special attention will be devoted to the following aspects: modeling a data integration application, processing queries in data integration, dealing with inconsistent data sources, and reasoning on queries.

2,716 citations

Journal ArticleDOI
TL;DR: FCA explicitly formalises extension and intension of a concept, their mutual relationships, and the fact that increasing intent implies decreasing extent and vice versa, and allows to derive a concept hierarchy from a given dataset.

2,029 citations