scispace - formally typeset
Search or ask a question
Author

Franz Pfeiffer

Other affiliations: Philips, Saarland University, Paul Scherrer Institute  ...read more
Bio: Franz Pfeiffer is an academic researcher from Technische Universität München. The author has contributed to research in topics: Grating & Tomography. The author has an hindex of 69, co-authored 515 publications receiving 21927 citations. Previous affiliations of Franz Pfeiffer include Philips & Saarland University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a setup consisting of three transmission gratings can efficiently yield quantitative differential phase-contrast images with conventional X-ray tubes, which can be scaled up to large fields of view.
Abstract: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics and materials science. For biological tissue samples, polymers or fibre composites, however, the use of conventional X-ray radiography is limited due to their weak absorption. This is resolved at highly brilliant X-ray synchrotron or micro-focus sources by using phase-sensitive imaging methods to improve the contrast1,2. However, the requirements of the illuminating radiation mean that hard-X-ray phase-sensitive imaging has until now been impractical with more readily available X-ray sources, such as X-ray tubes. In this letter, we report how a setup consisting of three transmission gratings can efficiently yield quantitative differential phase-contrast images with conventional X-ray tubes. In contrast with existing techniques, the method requires no spatial or temporal coherence, is mechanically robust, and can be scaled up to large fields of view. Our method provides all the benefits of contrast-enhanced phase-sensitive imaging, but is also fully compatible with conventional absorption radiography. It is applicable to X-ray medical imaging, industrial non-destructive testing, and to other low-brilliance radiation, such as neutrons or atoms.

1,789 citations

Journal ArticleDOI
TL;DR: Using a high-efficiency grating interferometer for hard X rays (10-30 keV) and a phase-stepping technique, separate radiographs of the phase and absorption profiles of bulk samples can be obtained from a single set of measurements.
Abstract: Using a high-efficiency grating interferometer for hard X rays (10-30 keV) and a phase-stepping technique, separate radiographs of the phase and absorption profiles of bulk samples can be obtained from a single set of measurements. Tomographic reconstruction yields quantitative three-dimensional maps of the X-ray refractive index, with a spatial resolution down to a few microns. The method is mechanically robust, requires little spatial coherence and monochromaticity, and can be scaled up to large fields of view, with a detector of correspondingly moderate spatial resolution. These are important prerequisites for use with laboratory X-ray sources.

1,264 citations

Journal ArticleDOI
18 Jul 2008-Science
TL;DR: A ptychographic imaging method is demonstrated that bridges the gap between CDI and STXM by measuring complete diffraction patterns at each point of a STXM scan.
Abstract: Coherent diffractive imaging (CDI) and scanning transmission x-ray microscopy (STXM) are two popular microscopy techniques that have evolved quite independently. CDI promises to reach resolutions below 10 nanometers, but the reconstruction procedures put stringent requirements on data quality and sample preparation. In contrast, STXM features straightforward data analysis, but its resolution is limited by the spot size on the specimen. We demonstrate a ptychographic imaging method that bridges the gap between CDI and STXM by measuring complete diffraction patterns at each point of a STXM scan. The high penetration power of x-rays in combination with the high spatial resolution will allow investigation of a wide range of complex mesoscopic life and material science specimens, such as embedded semiconductor devices or cellular networks.

1,164 citations

Journal ArticleDOI
TL;DR: This letter reports a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources and is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme.
Abstract: Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.

1,108 citations

Journal ArticleDOI
23 Sep 2010-Nature
TL;DR: An X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption is described.
Abstract: X-ray tomography is an invaluable tool in biomedical imaging. It can deliver the three-dimensional internal structure of entire organisms as well as that of single cells, and even gives access to quantitative information, crucially important both for medical applications and for basic research. Most frequently such information is based on X-ray attenuation. Phase contrast is sometimes used for improved visibility but remains significantly harder to quantify. Here we describe an X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption. This method uses a ptychographic coherent imaging approach to record tomographic data sets, exploiting both the high penetration power of hard X-rays and the high sensitivity of lensless imaging. As an example, we present images of a bone sample in which structures on the 100 nm length scale such as the osteocyte lacunae and the interconnective canalicular network are clearly resolved. The recovered electron density map provides a contrast high enough to estimate nanoscale bone density variations of less than one per cent. We expect this high-resolution tomography technique to provide invaluable information for both the life and materials sciences.

823 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: In this article, a setup consisting of three transmission gratings can efficiently yield quantitative differential phase-contrast images with conventional X-ray tubes, which can be scaled up to large fields of view.
Abstract: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics and materials science. For biological tissue samples, polymers or fibre composites, however, the use of conventional X-ray radiography is limited due to their weak absorption. This is resolved at highly brilliant X-ray synchrotron or micro-focus sources by using phase-sensitive imaging methods to improve the contrast1,2. However, the requirements of the illuminating radiation mean that hard-X-ray phase-sensitive imaging has until now been impractical with more readily available X-ray sources, such as X-ray tubes. In this letter, we report how a setup consisting of three transmission gratings can efficiently yield quantitative differential phase-contrast images with conventional X-ray tubes. In contrast with existing techniques, the method requires no spatial or temporal coherence, is mechanically robust, and can be scaled up to large fields of view. Our method provides all the benefits of contrast-enhanced phase-sensitive imaging, but is also fully compatible with conventional absorption radiography. It is applicable to X-ray medical imaging, industrial non-destructive testing, and to other low-brilliance radiation, such as neutrons or atoms.

1,789 citations

Journal ArticleDOI
TL;DR: An imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image, which can also correct for aberrations and digitally extend a microscope's depth-of-focus beyond the physical limitations of its optics.
Abstract: We report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth of focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 µm, a field of view of ∼120 mm^2 and a resolution-invariant depth of focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify successful FPM operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation.

1,363 citations