scispace - formally typeset
Search or ask a question
Author

Franz Rottensteiner

Bio: Franz Rottensteiner is an academic researcher from Leibniz University of Hanover. The author has contributed to research in topics: Conditional random field & Point cloud. The author has an hindex of 33, co-authored 190 publications receiving 4825 citations. Previous affiliations of Franz Rottensteiner include Middle East Technical University & University of Melbourne.


Papers
More filters
Journal ArticleDOI
TL;DR: This work integrates a Random Forest classifier into a Conditional Random Field framework, a flexible approach for obtaining a reliable classification result even in complex urban scenes, and investigates the relevance of different features for the LiDAR points as well as for the interaction of neighbouring points.
Abstract: In this work we address the task of the contextual classification of an airborne LiDAR point cloud. For that purpose, we integrate a Random Forest classifier into a Conditional Random Field (CRF) framework. It is a flexible approach for obtaining a reliable classification result even in complex urban scenes. In this way, we benefit from the consideration of context on the one hand and from the opportunity to use a large amount of features on the other hand. Considering the interactions in our experiments increases the overall accuracy by 2%, though a larger improvement becomes apparent in the completeness and correctness of some of the seven classes discerned in our experiments. We compare the Random Forest approach to linear models for the computation of unary and pairwise potentials of the CRF, and investigate the relevance of different features for the LiDAR points as well as for the interaction of neighbouring points. In a second step, building objects are detected based on the classified point cloud. For that purpose, the CRF probabilities for the classes are plugged into a Markov Random Field as unary potentials, in which the pairwise potentials are based on a Potts model. The 2D binary building object masks are extracted and evaluated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction. The evaluation shows that the main buildings (larger than 50 m 2 ) can be detected very reliably with a correctness larger than 96% and a completeness of 100%.

455 citations

Journal ArticleDOI
TL;DR: The results achieved by different methods are compared and analysed to identify promising strategies for automatic urban object extraction from current airborne sensor data, but also common problems of state-of-the-art methods.
Abstract: . For more than two decades, many efforts have been made to develop methods for extracting urban objects from data acquired by airborne sensors. In order to make the results of such algorithms more comparable, benchmarking data sets are of paramount importance. Such a data set, consisting of airborne image and laserscanner data, has been made available to the scientific community. Researchers were encouraged to submit results of urban object detection and 3D building reconstruction, which were evaluated based on reference data. This paper presents the outcomes of the evaluation for building detection, tree detection, and 3D building reconstruction. The results achieved by different methods are compared and analysed to identify promising strategies for automatic urban object extraction from current airborne sensor data, but also common problems of state-of-the-art methods.

379 citations

Journal ArticleDOI
TL;DR: In this paper, the results of the evaluation for building detection, tree detection, and 3D building reconstruction are compared and analyzed to identify promising strategies for automatic urban object extraction from current airborne sensor data, but also common problems of state-of-the-art methods.
Abstract: For more than two decades, many efforts have been made to develop methods for extracting urban objects from data acquired by airborne sensors. In order to make the results of such algorithms more comparable, benchmarking data sets are of paramount importance. Such a data set, consisting of airborne image and laserscanner data, has been made available to the scientific community by ISPRS WGIII/4. Researchers were encouraged to submit their results of urban object detection and 3D building reconstruction, which were evaluated based on reference data. This paper presents the outcomes of the evaluation for building detection, tree detection, and 3D building reconstruction. The results achieved by different methods are compared and analysed to identify promising strategies for automatic urban object extraction from current airborne sensor data, but also common problems of state-of-the-art methods.

339 citations

Journal ArticleDOI
TL;DR: A method for the detection of buildings in densely built-up urban areas by the fusion of first and last pulse laser scanner data and multi-spectral images and data fusion based on the theory of Dempster–Shafer is presented.

312 citations

Journal ArticleDOI
TL;DR: A comparison of the evaluation techniques shows that they highlight different properties of the building detection results, and a comprehensive evaluation strategy involving quality metrics derived by different methods is proposed.
Abstract: In this paper, different methods for the evaluation of building detection algorithms are compared. Whereas pixel-based evaluation gives estimates of the area that is correctly classified, the results are distorted by errors at the building outlines. These distortions are potentially in an order of 30%. Object-based evaluation techniques are less affected by such errors. However, the performance metrics thus delivered are sometimes considered to be less objective, because the definition of a ldquocorrect detectionrdquo is not unique. Based on a critical review of existing performance metrics, selected methods for the evaluation of building detection results are presented. These methods are used to evaluate the results of two different building detection algorithms in two test sites. A comparison of the evaluation techniques shows that they highlight different properties of the building detection results. As a consequence, a comprehensive evaluation strategy involving quality metrics derived by different methods is proposed.

311 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This review has revealed that RF classifier can successfully handle high data dimensionality and multicolinearity, being both fast and insensitive to overfitting.
Abstract: A random forest (RF) classifier is an ensemble classifier that produces multiple decision trees, using a randomly selected subset of training samples and variables. This classifier has become popular within the remote sensing community due to the accuracy of its classifications. The overall objective of this work was to review the utilization of RF classifier in remote sensing. This review has revealed that RF classifier can successfully handle high data dimensionality and multicolinearity, being both fast and insensitive to overfitting. It is, however, sensitive to the sampling design. The variable importance (VI) measurement provided by the RF classifier has been extensively exploited in different scenarios, for example to reduce the number of dimensions of hyperspectral data, to identify the most relevant multisource remote sensing and geographic data, and to select the most suitable season to classify particular target classes. Further investigations are required into less commonly exploited uses of this classifier, such as for sample proximity analysis to detect and remove outliers in the training samples.

3,244 citations

01 Jan 2004

2,223 citations

01 Jan 2016
TL;DR: The remote sensing and image interpretation is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading remote sensing and image interpretation. As you may know, people have look hundreds times for their favorite novels like this remote sensing and image interpretation, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some malicious virus inside their computer. remote sensing and image interpretation is available in our digital library an online access to it is set as public so you can get it instantly. Our book servers spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the remote sensing and image interpretation is universally compatible with any devices to read.

1,802 citations