scispace - formally typeset
Search or ask a question
Author

Fred C. Krebs

Bio: Fred C. Krebs is an academic researcher from Drexel University. The author has contributed to research in topics: Microbicide & Vaginal microbicide. The author has an hindex of 18, co-authored 46 publications receiving 1134 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Clinical and in vitro results suggest enhancement of HIV-1 infection in the presence of polyanionic compounds, and the prospects for the future development of these compounds as inhibitors of HIV -1 infection.

110 citations

Journal ArticleDOI
TL;DR: This review focuses on existing and developing combination therapies, covering preclinical development, in vitro and in vivo efficacy studies, and subsequent clinical trials, and the shift in focus within the microbicide development field from single compounds to combination approaches is explored.
Abstract: The discovery of the human immunodeficiency virus type 1 (HIV-1) in 1982 soon led to the identification and development of antiviral compounds to be used in treatment strategies for infected patients. Early in the epidemic, drug monotherapies frequently led to treatment failures because the virus quickly developed resistance to the single drug. Following the advent of highly active antiretroviral therapy (HAART) in 1995, dramatic improvements in HIV-1-infected patient health and survival were realized as more refined combination therapies resulted in reductions in viral loads and increases in CD4+ T-cell counts. In the absence of an effective vaccine, prevention of HIV-1 infection has also gained traction as an approach to curbing the pandemic. The development of compounds as safe and effective microbicides has intensified and has focused on blocking the transmission of HIV-1 during all forms of sexual intercourse. Initial preclinical investigations and clinical trials of microbicides focused on single compounds effective against HIV-1. However, the remarkable successes achieved using combination therapy to treat systemic HIV-1 infection have subsequently stimulated the study and development of combination microbicides that will simultaneously inhibit multiple aspects of the HIV-1 transmission process by targeting incoming viral particles, virus-infected cells, and cells susceptible to HIV-1 infection. This review focuses on existing and developing combination therapies, covering preclinical development, in vitro and in vivo efficacy studies, and subsequent clinical trials. The shift in focus within the microbicide development field from single compounds to combination approaches is also explored.

101 citations

Journal ArticleDOI
TL;DR: The murine model of toxicity is highlighted as a valuable tool for the preclinical assessment of toxicity and inflammation associated with exposure to candidate topical microbicide.
Abstract: Clinical trials evaluating the efficacy of nonoxynol-9 (N-9) as a topical microbicide concluded that N-9 offers no in vivo protection against human immunodeficiency virus type 1 (HIV-1) infection, despite demonstrated in vitro inactivation of HIV-1 by N-9. These trials emphasize the need for better model systems to determine candidate microbicide effectiveness and safety in a preclinical setting. To that end, time-dependent in vitro cytotoxicity, as well as in vivo toxicity and inflammation, associated with N-9 exposure were characterized with the goal of validating a mouse model of microbicide toxicity. In vitro studies using submerged cell cultures indicated that human cervical epithelial cells were inherently more sensitive to N-9-mediated damage than human vaginal epithelial cells. These results correlated with in vivo findings obtained by using Swiss Webster mice in which intravaginal inoculation of 1% N-9 or Conceptrol gel (containing 4% N-9) resulted in selective and acute disruption of the cervical columnar epithelial cells 2 h postapplication accompanied by intense inflammatory infiltrates within the lamina propria. Although damage to the cervical epithelium was apparent out to 8 h postapplication, these tissues resembled control tissue by 24 h postapplication. In contrast, minimal damage and infiltration were associated with both short- and long-term exposure of the vaginal mucosa to either N-9 or Conceptrol. These analyses were extended to examine the relative toxicity of polyethylene hexamethylene biguanide (PEHMB), a polybiguanide compound under evaluation as a candidate topical microbicide. In similar studies, in vivo exposure to 1% PEHMB caused minimal damage and inflammation of the genital mucosa, a finding consistent with the demonstration that PEHMB was >350-fold less cytotoxic than N-9 in vitro. Collectively, these studies highlight the murine model of toxicity as a valuable tool for the preclinical assessment of toxicity and inflammation associated with exposure to candidate topical microbicides.

88 citations

Journal ArticleDOI
TL;DR: In this article, modified versions of polyhexamethylene biguanide (PHMB) incorporating length changes in the hydrocarbon linker units were synthesized and evaluated for in vitro cytotoxicity and inhibition of HIV-1 infectivity.

84 citations

Journal ArticleDOI
TL;DR: It is demonstrated that treatment with I-XW-053 inhibited HIV-1 reverse transcription in multiple cell types, indirectly pointing to dysfunction in the uncoating process, and identified a CA-specific compound that targets and inhibits a novel region in the NTD-NTD interface, affects uncoates, and possesses broad-spectrum anti-HIV-1 activity.
Abstract: The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4′-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HIV-1 activity in single- and multiple-round infections but failed to inhibit viral replication in peripheral blood mononuclear cells (PBMCs), was identified. Three analogues of CK026 with reduced size and better drug-like properties were synthesized and assessed. Compound I-XW-053 (4-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid) retained all of the antiviral activity of the parental compound and inhibited the replication of a diverse panel of primary HIV-1 isolates in PBMCs, while displaying no appreciable cytotoxicity. This antiviral activity was specific to HIV-1, as I-XW-053 displayed no effect on the replication of SIV or against a panel of nonretroviruses. Direct interaction of I-XW-053 was quantified with wild-type and mutant CA protein using surface plasmon resonance and isothermal titration calorimetry. Mutation of Ile37 and Arg173, which are required for interaction with compound I-XW-053, crippled the virus at an early, preintegration step. Using quantitative PCR, we demonstrated that treatment with I-XW-053 inhibited HIV-1 reverse transcription in multiple cell types, indirectly pointing to dysfunction in the uncoating process. In summary, we have identified a CA-specific compound that targets and inhibits a novel region in the NTD-NTD interface, affects uncoating, and possesses broad-spectrum anti-HIV-1 activity.

67 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: How global demethylation of repeat sequences including transposable elements and the site-specific hypomethylation of certain genes might contribute to the deleterious effects that ultimately result in the initiation and progression of cancer and other diseases is considered.

770 citations

01 Apr 2007
TL;DR: Several oral nucleoside analogues with activity against HBV have been shown to be effective in suppressing viral levels and improving biochemical and histological features of disease in a high proportion of patients with and without HBeAg, at least in the short term.
Abstract: Chronic hepatitis B is caused by persistent infection with the hepatitis B virus (HBV), a unique DNA virus that replicates through an RNA intermediate produced from a stable covalently closed circular DNA molecule. Viral persistence appears to be due to inadequate innate and adaptive immune responses. Chronic infection has a variable course after several decades resulting in cirrhosis in up to one‐third of patients and liver cancer in a proportion of those with cirrhosis. Sensitive assays for HBV DNA levels in serum have been developed that provide important insights into pathogenesis and natural history. Therapy of hepatitis B is evolving. Peginterferon induces long‐term remissions in disease in one‐third of patients with typical hepatitis B e antigen (HBeAg) positive chronic hepatitis B, but a lesser proportion of those without HBeAg. Several oral nucleoside analogues with activity against HBV have been shown to be effective in suppressing viral levels and improving biochemical and histological features of disease in a high proportion of patients with and without HBeAg, at least in the short term. What is uncertain is which agent or combination of agents is most effective, how long therapy should last, and which criteria should be used to start, continue, switch or stop therapy. Long‐term therapy with nucleoside analogues may be the most appropriate approach to treatment, but the expense and lack of data on long‐term safety and efficacy make recommendations difficult. Clearly, many basic and clinical research challenges remain in defining optimal means of management of chronic hepatitis B. (HEPATOLOGY 2007;45:1056–1075.)

568 citations

Journal ArticleDOI
TL;DR: The present work aims to summarize the current approaches adopted for the synthesis of the 1,2,3-triazole and medicinal significance of these architectures as a lead structure for the discovery of drug molecules such as COX-1/COX-2 inhibitors, HIV protease inhibitors, CB1 cannabinoid receptor antagonist and much more which are in the pipeline of clinical trials.

563 citations

Journal ArticleDOI
TL;DR: This review which is the second in this series summarises the most common synthetic routes as applied to the preparation of many modern pharmaceutical compounds categorised as containing a six-membered heterocyclic ring.
Abstract: This review which is the second in this series summarises the most common synthetic routes as applied to the preparation of many modern pharmaceutical compounds categorised as containing a six-membered heterocyclic ring. The reported examples are based on the top retailing drug molecules combining synthetic information from both scientific journals and the wider patent literature. It is hoped that this compilation, in combination with the previously published review on five-membered rings, will form a comprehensive foundation and reference source for individuals interested in medicinal, synthetic and preparative chemistry.

563 citations