scispace - formally typeset
Search or ask a question
Author

Fred C. Lee

Bio: Fred C. Lee is an academic researcher from Virginia Tech. The author has contributed to research in topics: Inductor & Converters. The author has an hindex of 81, co-authored 312 publications receiving 25022 citations. Previous affiliations of Fred C. Lee include General Electric & University of Virginia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a family of high-efficiency, high step-up DC-DC converters with simple topologies is proposed, which use diodes and coupled windings instead of active switches to realize functions similar to those of active clamps.
Abstract: Many applications call for high step-up DC-DC converters that do not require isolation. Some DC-DC converters can provide high step-up voltage gain, but with the penalty of either an extreme duty ratio or a large amount of circulating energy. DC-DC converters with coupled inductors can provide high voltage gain, but their efficiency is degraded by the losses associated with leakage inductors. Converters with active clamps recycle the leakage energy at the price of increasing topology complexity. A family of high-efficiency, high step-up DC-DC converters with simple topologies is proposed in this paper. The proposed converters, which use diodes and coupled windings instead of active switches to realize functions similar to those of active clamps, perform better than their active-clamp counterparts. High efficiency is achieved because the leakage energy is recycled and the output rectifier reverse-recovery problem is alleviated.

974 citations

Proceedings ArticleDOI
07 Aug 2002
TL;DR: In this article, a LLC resonant converter is proposed for front end DC/DC conversion in a distributed power system, which utilizes leakage and magnetizing inductance of a transformer.
Abstract: A new LLC resonant converter is proposed for front end DC/DC conversion in a distributed power system. Three advantages are achieved with this resonant converter. First, ZVS turn on and low turn off current of MOSFETs are achieved. The switching loss is reduced so we can operate the converter at higher switching frequency. The second advantage is that with this topology, we can optimize the converter at high input voltage. Finally, with this topology, we can eliminate the secondary filter inductor, so the voltage stress on the secondary rectifier will be limited to two times the output voltage, better rectifier diodes can be used and secondary conduction loss can be reduced. The converter utilizes leakage and magnetizing inductance of a transformer. With magnetic integration concept, all the magnetic components can be built in one magnetic core. The operation and characteristic of this converter is introduced and efficiency comparison between this converter and a conventional PWM converter is given which shows a great improvement by using this topology.

941 citations

Journal ArticleDOI
29 Jun 1992
TL;DR: In this paper, a class of zero voltage transition (ZVT) power converters is proposed in which both the transistor and the rectifier operate with zero voltage switching and are subjected to minimum voltage and current stresses.
Abstract: A class of zero voltage transition (ZVT) power converters is proposed in which both the transistor and the rectifier operate with zero voltage switching and are subjected to minimum voltage and current stresses. The boost ZVT-PWM converter is used as an example to illustrate the operation of these converters. A 300 kHz, 600 W ZVT-PWM boost, DC-DC converter, and a 100 kHz, 600 W power factor correction circuit using the ZVT-PWM technique and an insulated gate bipolar transistor (IGBT) device were breadboarded to show the operation of the proposed converters. It is shown that the circuit technology greatly improves the converter performance in terms of efficiency, switching noise, and circuit reliability. >

896 citations

Proceedings ArticleDOI
11 Mar 1990
TL;DR: In this article, a steady-state analysis is presented with complete characterization of the converter operation and the design procedures based on the analysis are presented and the various losses in the circuit assessed.
Abstract: A steady-state analysis is presented with complete characterization of the converter operation. A small-signal model of the converter is established. The design procedures based on the analysis are presented and the various losses in the circuit assessed. Critical design considerations for a high-power, high-voltage application are analyzed. The results of the analysis are verified using a high-voltage. 2 kW prototype. >

875 citations

Proceedings ArticleDOI
19 Mar 2006
TL;DR: In this paper, the relationship between converter efficiency and operation range with different circuit parameters has been revealed and an optimal design methodology has been developed based on the revealed relationship, and a 1MHz, 1kW LLC converter is designed to verify the proposed method.
Abstract: Although LLC resonant converter can achieve wide operation range with high efficiency, lack of design methodology makes it difficult to be implemented. In this paper, based on the theoretical analysis on the operation principles during normal condition and holdup time, the relationship between converter efficiency and operation range with different circuit parameters has be revealed. An optimal design methodology has been developed based on the revealed relationship. A 1MHz, 1kW LLC converter is designed to verify the proposed method.

638 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-Clamped (flying capacitor), and cascaded multicell with separate DC sources are presented and the circuit topology options are presented.
Abstract: Multilevel inverter technology has emerged recently as a very important alternative in the area of high-power medium-voltage energy control. This paper presents the most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-clamped (flying capacitor), and cascaded multicell with separate DC sources. Emerging topologies like asymmetric hybrid cells and soft-switched multilevel inverters are also discussed. This paper also presents the most relevant control and modulation methods developed for this family of converters: multilevel sinusoidal pulsewidth modulation, multilevel selective harmonic elimination, and space-vector modulation. Special attention is dedicated to the latest and more relevant applications of these converters such as laminators, conveyor belts, and unified power-flow controllers. The need of an active front end at the input side for those inverters supplying regenerative loads is also discussed, and the circuit topology options are also presented. Finally, the peripherally developing areas such as high-voltage high-power devices and optical sensors and other opportunities for future development are addressed.

6,472 citations

Journal Article

3,074 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the main operation modes and control structures for power converters belonging to micro-grids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations.
Abstract: The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the electrical system. The high penetration of distributed generators, linked to the grid through highly controllable power processors based on power electronics, together with the incorporation of electrical energy storage systems, communication technologies, and controllable loads, opens new horizons to the effective expansion of microgrid applications integrated into electrical power systems. This paper carries out an overview about microgrid structures and control techniques at different hierarchical levels. At the power converter level, a detailed analysis of the main operation modes and control structures for power converters belonging to microgrids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations. This analysis is extended as well toward the hierarchical control scheme of microgrids, which, based on the primary, secondary, and tertiary control layer division, is devoted to minimize the operation cost, coordinating support services, meanwhile maximizing the reliability and the controllability of microgrids. Finally, the main grid services that microgrids can offer to the main network, as well as the future trends in the development of their operation and control for the next future, are presented and discussed.

2,621 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrid vehicles and classify them into off-board and on-board types with unidirectional or bidirectional power flow.
Abstract: This paper reviews the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrids. Charger systems are categorized into off-board and on-board types with unidirectional or bidirectional power flow. Unidirectional charging limits hardware requirements and simplifies interconnection issues. Bidirectional charging supports battery energy injection back to the grid. Typical on-board chargers restrict power because of weight, space, and cost constraints. They can be integrated with the electric drive to avoid these problems. The availability of charging infrastructure reduces on-board energy storage requirements and costs. On-board charger systems can be conductive or inductive. An off-board charger can be designed for high charging rates and is less constrained by size and weight. Level 1 (convenience), Level 2 (primary), and Level 3 (fast) power levels are discussed. Future aspects such as roadbed charging are presented. Various power level chargers and infrastructure configurations are presented, compared, and evaluated based on amount of power, charging time and location, cost, equipment, and other factors.

2,327 citations

Journal ArticleDOI
02 Oct 1988
TL;DR: In this paper, three DC/DC converter topologies suitable for high power-density high power applications are presented, which operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency.
Abstract: Three DC/DC converter topologies suitable for high-power-density high-power applications are presented. All three circuits operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency. The three-phase dual-bridge converter proposed is shown to have the most favorable characteristics. This converter consists of two three-phase inverter stages operating in a high-frequency six-step mode. In contrast to existing single-phase AC-link DC/DC converters, lower turn-off peak currents in the power devices and lower RMS current ratings for both the input and output filter capacitors are obtained. This is in addition to smaller filter element values due to the higher-frequency content of the input and output waveforms. Furthermore, the use of a three-phase symmetrical transformer instead of single-phase transformers and a better utilization of the available apparent power of the transformer (as a consequence of the controlled output inverter) significantly increase the power density attainable. >

2,056 citations