scispace - formally typeset
Search or ask a question
Author

Fred J. A. M. van Houten

Bio: Fred J. A. M. van Houten is an academic researcher from University of Twente. The author has contributed to research in topics: Conceptual design & New product development. The author has an hindex of 12, co-authored 23 publications receiving 523 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new emerging frontier in the evolution of the digitalisation and the 4th industrial revolution (Industry 4.0) is considered to be that of biologicalisation in manufacturing.
Abstract: A new emerging frontier in the evolution of the digitalisation and the 4th industrial revolution (Industry 4.0) is considered to be that of “Biologicalisation in Manufacturing”. This has been defined by the authors to be “The use and integration of biological and bio-inspired principles, materials, functions, structures and resources for intelligent and sustainable manufacturing technologies and systems with the aim of achieving their full potential.” In this White Paper, detailed consideration is given to the meaning and implications of “Biologicalisation” from the perspective of the design, function and operation of products, manufacturing processes, manufacturing systems, supply chains and organisations. The drivers and influencing factors are also reviewed in detail and in the context of significant developments in materials science and engineering. The paper attempts to test the hypothesis of this topic as a breaking new frontier and to provide a vision for the development of manufacturing science and technology from the perspective of incorporating inspiration from biological systems. Seven recommendations are delivered aimed at policy makers, at funding agencies, at the manufacturing research community and at those industries involved in the development of next generation manufacturing technology and systems. It is concluded that it is valid to argue that Biologicalisation in Manufacturing truly represents a new and breaking frontier of digitalisation and Industry 4.0 and that the market potential is very strong. It is evident that extensive research and development is required in order to maximise on the benefits of a biological transformation.

115 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented dimensionless design graphs for three types of flexure elements, based on finite element analysis, and used these graphs as a design tool to determine the optimal geometry of a flexure element based on the stiffness and rotation demands.
Abstract: This paper presents dimensionless design graphs for three types of flexure elements, based on finite element analysis. Using these graphs as a design tool, a designer can determine the optimal geometry, based on the stiffness and rotation demands of a flexure element. An example is given using the beam flexure hinge. Between the analyzed flexure hinges, a comparison is made on basis of equal hinge functionality: rotation. The result describes the maximum stiffness properties from different hinges in identical situations. A beam flexure element is preferred over a circular flexure hinge for stiffness demands in a single direction, while a cross flexure element enables medium stiffness in two perpendicular directions.

103 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of approaches in structuring and using tools/techniques, based on the effectuation of creativity and decision-making in the design environment, is presented.
Abstract: For product designers, tools and techniques are essential in driving the design cycle. Nevertheless, their employment usually is implicit, while passing over e.g. the design and project environments empowering their adequate use. This publication presents an overview of approaches in structuring and using tools/techniques, based on the effectuation of creativity and decision-making in the design environment. In elaborating on characteristics of tools/techniques and ensuing ways of selecting them, the designer's portfolio of tools/techniques is characterised. Representative problems of tool/technique usage are depicted and contextualised by illustrating their industrial application. Prospects for future developments are also reviewed

97 citations

Book ChapterDOI
01 Jan 1998
TL;DR: In this paper, the current status of and research behind some of the major computer aided tolerancing (CAT) systems that are now commercially available is discussed and some new research developments are identified that will influence future CAT systems.
Abstract: The paper discusses the current status of and research behind some of the major computer aided tolerancing (CAT) systems that are now commercially available. The focus is directed to computer aided toler- ancing systems which serve as an aid in the support of the design process and which are suitable for both 2D and 3D purposes. Other focal points are the theoretical backgrounds as well as the usefulness of the currently available systems in design practice. Some new research developments are identified that will influence future CAT systems. In addition, shortcomings of currently available CAT systems are discussed. Finally, resulting from the identified shortcomings and new research efforts, future research objectives are identified in order to arrive at improved future CAT systems.

53 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the use of product models by conceptual designers and concluded that several types of models are needed for conceptual designers to cope with and structure the large amount of information.
Abstract: This article investigates the use of product models by conceptual designers. After a short introduction, abstraction applied in conceptual design is described. A model that places conceptual design in a three-dimensional space is used. Applications of conceptual design from the literature are used to identify several product models used by conceptual designers to handle the complex problems. Next, the models available in four conceptual design support tools are listed. In order to investigate the current use of models by conceptual designers, a questionnaire has been designed and issued. The design and results of this questionnaire are described and analysed. The results have been discussed with conceptual designers. It is concluded that several types of models are needed for conceptual designers to cope with and structure the large amount of information. In particular, budgets are used in the very early stages of the design process. Following that, mathematical models, physical models, block diagrams, specifications, and sketches are used. computer-aided design tools are used to implement the design. Finally, steps for further research are given.

41 citations


Cited by
More filters
08 Nov 2014
TL;DR: A knowledge representation schema for design called design prototypes is introduced and described to provide a suitable framework to distinguish routine, innovative, and creative design.
Abstract: A prevalent and pervasive view of designing is that it can be modeled using variables and decisions made about what values should be taken by these variables. The activity of designing is carried out with the expectation that the designed artifact will operate in the natural world and the social world. These worlds impose constraints on the variables and their values; so, design could be described as a goal-oriented, constrained, decision- making activity. However, design distinguish- es itself from other similarly described activities not only by its domain but also by additional necessary features. Designing involves exploration, exploring what variables might be appropriate. The process of explo- ration involves both goal variables and deci- sion variables. In addition, designing involves learning: Part of the exploration activity is learning about emerging features as a design proceeds. Finally, design activity occurs within two contexts: the context within which the designer operates and the context produced by the developing design itself. The designer’s perception of what the context is affects the implication of the context on the design. The context shifts as the designer’s perceptions change. Design activity can be now characterized as a goal-oriented, con- strained, decision-making, exploration, and learning activity that operates within a con- text that depends on the designer’s percep- tion of the context.

1,697 citations

Journal ArticleDOI
TL;DR: In the case of aircraft components, AM technology enables low-volume manufacturing, easy integration of design changes and, at least as importantly, piece part reductions to greatly simplify product assembly.
Abstract: The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. However, this growth has mainly been process-driven. The evolution of engineering design to take advantage of the possibilities afforded by AM and to manage the constraints associated with the technology has lagged behind. This paper presents the major opportunities, constraints, and economic considerations for Design for Additive Manufacturing. It explores issues related to design and redesign for direct and indirect AM production. It also highlights key industrial applications, outlines future challenges, and identifies promising directions for research and the exploitation of AM's full potential in industry.

1,132 citations

Journal ArticleDOI
TL;DR: An intertwined supply network (ISN) is an entirety of interconnected supply chains (SC) which, in their integrity secure the provision of society and markets with goods and services.
Abstract: An intertwined supply network (ISN) is an entirety of interconnected supply chains (SC) which, in their integrity secure the provision of society and markets with goods and services. The ISNs are o...

863 citations

Book ChapterDOI
01 Nov 2015
TL;DR: In this article, the capabilities of additive manufacturing technologies provide an opportunity to rethink DFM to take advantage of the unique capabilities of these technologies, and several companies are now using AM technologies for production manufacturing.
Abstract: Design for manufacture and assembly (DFM) has typically meant that designers should tailor their designs to eliminate manufacturing difficulties and minimize manufacturing, assembly, and logistics costs. However, the capabilities of additive manufacturing technologies provide an opportunity to rethink DFM to take advantage of the unique capabilities of these technologies. As mentioned in Chap. 16, several companies are now using AM technologies for production manufacturing. For example, Siemens, Phonak, Widex, and the other hearing aid manufacturers use selective laser sintering and stereolithography machines to produce hearing aid shells; Align Technology uses stereolithography to fabricate molds for producing clear dental braces (“aligners”); and Boeing and its suppliers use polymer powder bed fusion (PBF) to produce ducts and similar parts for F-17 fighter jets. For hearing aids and dental aligners, AM machines enable manufacturing of tens to hundreds of thousands of parts, where each part is uniquely customized based upon person-specific geometric data. In the case of aircraft components, AM technology enables low-volume manufacturing, easy integration of design changes and, at least as importantly, piece part reductions to greatly simplify product assembly.

631 citations

Journal ArticleDOI
TL;DR: The VSC model can help firms in guiding their decisions on recovery and re-building of their SCs after global, long-term crises such as the COVID-19 pandemic and can be of value for decision-makers to design SCs that can react adaptively to both positive changes and negative changes.
Abstract: Viability is the ability of a supply chain (SC) to maintain itself and survive in a changing environment through a redesign of structures and replanning of performance with long-term impacts. In this paper, we theorize a new notion-the viable supply chain (VSC). In our approach, viability is considered as an underlying SC property spanning three perspectives, i.e., agility, resilience, and sustainability. The principal ideas of the VSC model are adaptable structural SC designs for supply-demand allocations and, most importantly, establishment and control of adaptive mechanisms for transitions between the structural designs. Further, we demonstrate how the VSC components can be categorized across organizational, informational, process-functional, technological, and financial structures. Moreover, our study offers a VSC framework within an SC ecosystem. We discuss the relations between resilience and viability. Through the lens and guidance of dynamic systems theory, we illustrate the VSC model at the technical level. The VSC model can be of value for decision-makers to design SCs that can react adaptively to both positive changes (i.e., the agility angle) and be able to absorb negative disturbances, recover and survive during short-term disruptions and long-term, global shocks with societal and economical transformations (i.e., the resilience and sustainability angles). The VSC model can help firms in guiding their decisions on recovery and re-building of their SCs after global, long-term crises such as the COVID-19 pandemic. We emphasize that resilience is the central perspective in the VSC guaranteeing viability of the SCs of the future. Emerging directions in VSC research are discussed.

545 citations