scispace - formally typeset
Search or ask a question
Author

Fred J. Hickernell

Bio: Fred J. Hickernell is an academic researcher from Illinois Institute of Technology. The author has contributed to research in topics: Monte Carlo method & Bounded function. The author has an hindex of 34, co-authored 127 publications receiving 4172 citations. Previous affiliations of Fred J. Hickernell include University of Southern California & Shanghai Normal University.


Papers
More filters
Journal ArticleDOI
TL;DR: An error bound for multidimensional quadrature is derived that includes the Koksma-Hlawka inequality as a special case and includes as special cases the L p -star discrepancy and P α that arises in the study of lattice rules.
Abstract: An error bound for multidimensional quadrature is derived that includes the Koksma-Hlawka inequality as a special case. This error bound takes the form of a product of two terms. One term, which depends only on the integrand, is defined as a generalized variation. The other term, which depends only on the quadrature rule, is defined as a generalized discrepancy. The generalized discrepancy is a figure of merit for quadrature rules and includes as special cases the L p -star discrepancy and P α that arises in the study of lattice rules.

693 citations

Book ChapterDOI
01 Jan 1998
TL;DR: A simple but often effective way to approximate an integral over the s-dimensional unit cube is to take the average of the integrand over some set P of N points.
Abstract: A simple, but often effective, way to approximate an integral over the s-dimensional unit cube is to take the average of the integrand over some set P of N points. Monte Carlo methods choose P randomly and typically obtain an error of 0(N-1/2). Quasi-Monte Carlo methods attempt to decrease the error by choosing P in a deterministic (or quasi-random) way so that the points are more uniformly spread over the integration domain.

286 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new method for randomizing the Halton sequence using the von Neumann-Kakutani transformation, which combines the potential accuracy advantage of Halton sequences in multi-dimensional integration with the practical error estimation advantage of Monte Carlo methods.

191 citations

Journal ArticleDOI
TL;DR: The construction of an infinite sequence of points, the first bm of which forms a lattice for any nonnegative integer m, so that if the quadrature error using an initial lattice is too large, the lattice can be extended without discarding the original points.
Abstract: Integration lattices are one of the main types of low discrepancy sets used in quasi-Monte Carlo methods. However, they have the disadvantage of being of fixed size. This article describes the construction of an infinite sequence of points, the first bm of which forms a lattice for any nonnegative integer m. Thus, if the quadrature error using an initial lattice is too large, the lattice can be extended without discarding the original points. Generating vectors for extensible lattices are found by minimizing a loss function based on some measure of discrepancy or nonuniformity of the lattice. The spectral test used for finding pseudorandom number generators is one important example of such a discrepancy. The performance of the extensible lattices proposed here is compared to that of other methods for some practical quadrature problems.

138 citations

Journal ArticleDOI
TL;DR: This article describes an implementation of two types of random scrambling, one proposed by Owen and another proposed by Faure and Tezuka, and the performances of these sequences on various test problems are discussed.
Abstract: Random scrambling of deterministic (t, m, s)-nets and (t, s)-sequences eliminates their inherent bias while retaining their low-discrepancy properties. This article describes an implementation of two types of random scrambling, one proposed by Owen and another proposed by Faure and Tezuka. The four different constructions of digital sequences implemented are those proposed by Sobol', Faure, Niederreiter, and Niederreiter and Xing. Because the random scrambling involves manipulating all digits of each point, the code must be written carefully to minimize the execution time. Computed root mean square discrepancies of the scrambled sequences are compared to known theoretical results. Furthermore, the performances of these sequences on various test problems are discussed.

129 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling framework for estimating Output from Computer Experiments-Predicting Output from Training Data and Criteria Based Designs for computer Experiments.
Abstract: Many scientific phenomena are now investigated by complex computer models or codes A computer experiment is a number of runs of the code with various inputs A feature of many computer experiments is that the output is deterministic--rerunning the code with the same inputs gives identical observations Often, the codes are computationally expensive to run, and a common objective of an experiment is to fit a cheaper predictor of the output to the data Our approach is to model the deterministic output as the realization of a stochastic process, thereby providing a statistical basis for designing experiments (choosing the inputs) for efficient prediction With this model, estimates of uncertainty of predictions are also available Recent work in this area is reviewed, a number of applications are discussed, and we demonstrate our methodology with an example

6,583 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Journal ArticleDOI
TL;DR: Some applications of centroidal Voronoi tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals are given.
Abstract: A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals. We discuss methods for computing these tessellations, provide some analyses concerning both the tessellations and the methods for their determination, and, finally, present the results of some numerical experiments.

2,151 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques, and showed Monte Carlo to be very robust but also slow.
Abstract: Monte Carlo is one of the most versatile and widely used numerical methods. Its convergence rate, O(N−1/2), is independent of dimension, which shows Monte Carlo to be very robust but also slow. This article presents an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques. Accelerated convergence for Monte Carlo quadrature is attained using quasi-random (also called low-discrepancy) sequences, which are a deterministic alternative to random or pseudo-random sequences. The points in a quasi-random sequence are correlated to provide greater uniformity. The resulting quadrature method, called quasi-Monte Carlo, has a convergence rate of approximately O((logN)kN−1). For quasi-Monte Carlo, both theoretical error estimates and practical limitations are presented. Although the emphasis in this article is on integration, Monte Carlo simulation of rarefied gas dynamics is also discussed. In the limit of small mean free path (that is, the fluid dynamic limit), Monte Carlo loses its effectiveness because the collisional distance is much less than the fluid dynamic length scale. Computational examples are presented throughout the text to illustrate the theory. A number of open problems are described.

1,708 citations