scispace - formally typeset
Search or ask a question
Author

Fred van Rantwijk

Other affiliations: Moscow State University
Bio: Fred van Rantwijk is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Ionic liquid & Acylation. The author has an hindex of 45, co-authored 105 publications receiving 8201 citations. Previous affiliations of Fred van Rantwijk include Moscow State University.


Papers
More filters
Journal ArticleDOI
TL;DR: Roger Sheldon developed the concepts of E factors and atom utilization for assessing the environmental impact of chemical processes, particularly in relation to fine chemicals production.
Abstract: Roger Sheldon (1942) received a PhD in organic chemistry from the University of Leicester (UK) in 1967. This was followed by post-doctoral studies with Prof. Jay Kochi in the U.S. From 1969 to 1980 he was with Shell Research in Amsterdam and from 1980 to 1990 he was R&D Director of DSM Andeno. In 1991 he moved to his present position as Professor of organic chemistry and catalysis at the Delft University of Technology (The Netherlands). His primary research interests are in the application of catalytic methodologies—homogeneous, heterogeneous and enzymatic—in organic synthesis, particularly in relation to fine chemicals production. He developed the concepts of E factors and atom utilization for assessing the environmental impact of chemical processes.

1,567 citations

Journal ArticleDOI
TL;DR: Several ionic liquids appear as an alternative to conventional organic solvents, providing comparable or higher rates and, in some cases, improved enantioselectivity.

725 citations

Journal ArticleDOI
TL;DR: Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents; their use as reaction media for biocatalysis is discussed.

618 citations

Journal ArticleDOI
TL;DR: Carbohydrates are only sparingly soluble in common organic solvents as well as in weakly coordinating ionic liquids, such as [BMIm]BF4, and mediated the esterification of sucrose with dodecanoic acid in Candida antarctica lipase B.

365 citations

Journal ArticleDOI
TL;DR: In this article, the effects of ionic liquid media on the activity of Candida antarctica lipase B in a simple transesterification reaction were studied, and denaturation of CaLB was observed upon dissolution in ionic liquids in which the activity was low.

315 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
TL;DR: There have been parallel and collaborative exchanges between academic research and industrial developments since the materials were first reported in 1914, it is demonstrated.
Abstract: In contrast to a recently expressed, and widely cited, view that “Ionic liquids are starting to leave academic labs and find their way into a wide variety of industrial applications”, we demonstrate in this critical review that there have been parallel and collaborative exchanges between academic research and industrial developments since the materials were first reported in 1914 (148 references)

4,865 citations

Journal ArticleDOI
31 Oct 2003-Science
TL;DR: Rogers and Seddon as discussed by the authors reviewed recent progress on developing new ionic liquid solvents for use in chemical synthesis, catalysis, fuel cells, and other applications.
Abstract: Ionic liquids are composed entirely of ions. Because of the wide range of possible binary and ternary ionic liquids, they offer a potentially wide range of solvent properties. In their Perspective, Rogers and Seddon review recent progress on developing new ionic liquid solvents for use in chemical synthesis, catalysis, fuel cells, and other applications. Ionic liquids are considered advantageous not only because of their versatility but also for their "green" credentials, although it is important to remember that not all ionic liquids are environmentally benign. One industrial process has been reported, and others may not be far behind. The authors conclude that in the next decade, ionic liquids are likely to replace conventional solvents in many applications.

3,687 citations

Journal ArticleDOI
TL;DR: All works discussed in this review aim at demonstrating that Deep Eutectic Solvents not only allow the design of eco-efficient processes but also open a straightforward access to new chemicals and materials.
Abstract: Within the framework of green chemistry, solvents occupy a strategic place. To be qualified as a green medium, these solvents have to meet different criteria such as availability, non-toxicity, biodegradability, recyclability, flammability, and low price among others. Up to now, the number of available green solvents are rather limited. Here we wish to discuss a new family of ionic fluids, so-called Deep Eutectic Solvents (DES), that are now rapidly emerging in the current literature. A DES is a fluid generally composed of two or three cheap and safe components that are capable of self-association, often through hydrogen bond interactions, to form a eutectic mixture with a melting point lower than that of each individual component. DESs are generally liquid at temperatures lower than 100 °C. These DESs exhibit similar physico-chemical properties to the traditionally used ionic liquids, while being much cheaper and environmentally friendlier. Owing to these remarkable advantages, DESs are now of growing interest in many fields of research. In this review, we report the major contributions of DESs in catalysis, organic synthesis, dissolution and extraction processes, electrochemistry and material chemistry. All works discussed in this review aim at demonstrating that DESs not only allow the design of eco-efficient processes but also open a straightforward access to new chemicals and materials.

3,325 citations

Journal ArticleDOI
TL;DR: The concepts of design and the scientific philosophy of Green Chemistry are covered with a set of illustrative examples and the challenge of using the Principles as a cohesive design system is discussed.
Abstract: Green Chemistry is a relatively new emerging field that strives to work at the molecular level to achieve sustainability. The field has received widespread interest in the past decade due to its ability to harness chemical innovation to meet environmental and economic goals simultaneously. Green Chemistry has a framework of a cohesive set of Twelve Principles, which have been systematically surveyed in this critical review. This article covers the concepts of design and the scientific philosophy of Green Chemistry with a set of illustrative examples. Future trends in Green Chemistry are discussed with the challenge of using the Principles as a cohesive design system (93 references).

2,942 citations