scispace - formally typeset
Search or ask a question
Author

Fred W. Fitzke

Bio: Fred W. Fitzke is an academic researcher from UCL Institute of Ophthalmology. The author has contributed to research in topics: Visual acuity & Retinitis pigmentosa. The author has an hindex of 63, co-authored 156 publications receiving 14085 citations. Previous affiliations of Fred W. Fitzke include University of London & Moorfields Eye Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Three young adult patients with early-onset, severe retinal dystrophy were administered subretinal injections of recombinant adeno-associated virus vector 2/2 expressing RPE65 complementary DNA (cDNA) under the control of a human R PE65 promoter.
Abstract: Early-onset, severe retinal dystrophy caused by mutations in the gene encoding reti- nal pigment epithelium-specific 65-kDa protein (RPE65) is associated with poor vi- sion at birth and complete loss of vision in early adulthood. We administered to three young adult patients subretinal injections of recombinant adeno-associated virus vector 2/2 expressing RPE65 complementary DNA (cDNA) under the control of a human RPE65 promoter. There were no serious adverse events. There was no clinically significant change in visual acuity or in peripheral visual fields on Gold- mann perimetry in any of the three patients. We detected no change in retinal re- sponses on electroretinography. One patient had significant improvement in visual function on microperimetry and on dark-adapted perimetry. This patient also showed improvement in a subjective test of visual mobility. These findings provide support for further clinical studies of this experimental approach in other patients with mutant RPE65. (ClinicalTrials.gov number, NCT00643747.)

1,912 citations

Journal ArticleDOI
TL;DR: A clinically useful map that relates visual field test points to regions of the optic nerve head (ONH) has been produced that will aid clinical evaluation of glaucoma patients and suspects, as well as form the basis for investigations of the relationship between retinal light sensitivity and ONH structure.

666 citations

Journal ArticleDOI
TL;DR: In dogs, RPE65 gene therapy with the same vector at lower doses improved vision-guided behavior, but only higher doses resulted in improvements in retinal function that were detectable with the use of ERG, and comparison with the results obtained in the dog model indicates that there is a species difference in the amount of R PE65 required to drive the visual cycle.
Abstract: BackgroundMutations in RPE65 cause Leber’s congenital amaurosis, a progressive retinal degenerative disease that severely impairs sight in children. Gene therapy can result in modest improvements in night vision, but knowledge of its efficacy in humans is limited. MethodsWe performed a phase 1–2 open-label trial involving 12 participants to evaluate the safety and efficacy of gene therapy with a recombinant adeno-associated virus 2/2 (rAAV2/2) vector carrying the RPE65 complementary DNA, and measured visual function over the course of 3 years. Four participants were administered a lower dose of the vector, and 8 were administered a higher dose. In a parallel study in dogs, we investigated the relationship among vector dose, visual function, and electroretinography (ERG) findings. ResultsImprovements in retinal sensitivity were evident, to varying extents, in six participants for up to 3 years, peaking at 6 to 12 months after treatment and then declining. No associated improvement in retinal function was d...

599 citations

Journal ArticleDOI
TL;DR: In vivo imaging of autofluorescence of the fundus was achieved using a scanning laser ophthalmoscope to allow the detection of the abnormal phenotype in genetically determined disease at a time when other techniques may not.
Abstract: BACKGROUND--Variation of fluorescence derived from lipofuscin in the retinal pigment epithelium has been recorded with age and in retinal diseases. Studies have been based largely on in vitro observations on eye bank eyes which has placed severe limitations on the data available. METHODS--A technique is described whereby in vivo imaging of autofluorescence of the fundus was achieved using a scanning laser ophthalmoscope. RESULTS--The optical characteristics, distribution, and variation with disease imply that the fluorescence is derived from lipofuscin in the pigment epithelium. Autofluorescence is shown to be abnormally high in certain inherited diseases, and low in the presence of retinal atrophy. CONCLUSION--This technique may be useful both in clinical practice and research. It may allow the detection of the abnormal phenotype in genetically determined disease at a time when other techniques may not. Longitudinal studies of age related macular disease would permit correlation between changes in the pigment epithelium and Bruch's membrane to be established.

502 citations

Journal ArticleDOI
TL;DR: Findings demonstrate that both retinitis pigmentosa and macular dystrophies are caused by mutations in RDS and that the functional significance of certain amino–acids in peripherin–RDS may be different in cones and rods.
Abstract: Mutations in the RDS gene have been sought in families with autosomal dominant retinal dystrophies. A cysteine deletion at codon 118/119 is associated with retinitis pigmentosa in one. Three families with similar macular dystrophy have mutations at codon 172, arginine being substituted by tryptophan in two and by glutamine in one. A stop sequence at codon 258 exists in a family with adult vitelliform macular dystrophy. These findings demonstrate that both retinitis pigmentosa and macular dystrophies are caused by mutations in the RDS gene, and that the functional significance of certain amino-acids in peripherin-rds may be different in cones and rods.

446 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new definition of dry eye was developed to reflect current understanding of the disease, and a three-part classification system was recommended, based on the severity of the dry eye disease, which is expected to provide a rational basis for therapy.
Abstract: The aim of the DEWS Definition and Classification Subcommittee was to provide a contemporary definition of dry eye disease, supported within a comprehensive classification framework. A new definition of dry eye was developed to reflect current understanding of the disease, and the committee recommended a three-part classification system. The first part is etiopathogenic and illustrates the multiple causes of dry eye. The second is mechanistic and shows how each cause of dry eye may act through a common pathway. It is stressed that any form of dry eye can interact with and exacerbate other forms of dry eye, as part of a vicious circle. Finally, a scheme is presented, based on the severity of the dry eye disease, which is expected to provide a rational basis for therapy. These guidelines are not intended to override the clinical assessment and judgment of an expert clinician in individual cases, but they should prove helpful in the conduct of clinical practice and research.

2,717 citations

Journal ArticleDOI
TL;DR: This review summarizes the current knowledge of RPE functions and describes how failure of these functions causes loss of visual function.
Abstract: Located between vessels of the choriocapillaris and light-sensitive outer segments of the photoreceptors, the retinal pigment epithelium (RPE) closely interacts with photoreceptors in the maintenance of visual function. Increasing knowledge of the multiple functions performed by the RPE improved the understanding of many diseases leading to blindness. This review summarizes the current knowledge of RPE functions and describes how failure of these functions causes loss of visual function. Mutations in genes that are expressed in the RPE can lead to photoreceptor degeneration. On the other hand, mutations in genes expressed in photoreceptors can lead to degenerations of the RPE. Thus both tissues can be regarded as a functional unit where both interacting partners depend on each other.

2,387 citations

Journal ArticleDOI
TL;DR: This review describes a scheme for diagnosis of glaucoma in population based prevalence surveys that makes provision for diagnosing glauca in eyes with severe visual loss where formal field testing is impractical, and for blind eyes in which the optic disc cannot be seen because of media opacities.
Abstract: This review describes a scheme for diagnosis of glaucoma in population based prevalence surveys. Cases are diagnosed on the grounds of both structural and functional evidence of glaucomatous optic neuropathy. The scheme also makes provision for diagnosing glaucoma in eyes with severe visual loss where formal field testing is impractical, and for blind eyes in which the optic disc cannot be seen because of media opacities.

2,004 citations

Journal ArticleDOI
TL;DR: OCT as discussed by the authors synthesises cross-sectional images from a series of laterally adjacent depth-scans, which can be used to assess tissue and cell function and morphology in situ.
Abstract: There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

1,914 citations

Proceedings ArticleDOI
16 Jun 2012
TL;DR: This work proposes a novel keypoint descriptor inspired by the human visual system and more precisely the retina, coined Fast Retina Keypoint (FREAK), which is in general faster to compute with lower memory load and also more robust than SIFT, SURF or BRISK.
Abstract: A large number of vision applications rely on matching keypoints across images. The last decade featured an arms-race towards faster and more robust keypoints and association algorithms: Scale Invariant Feature Transform (SIFT)[17], Speed-up Robust Feature (SURF)[4], and more recently Binary Robust Invariant Scalable Keypoints (BRISK)[I6] to name a few. These days, the deployment of vision algorithms on smart phones and embedded devices with low memory and computation complexity has even upped the ante: the goal is to make descriptors faster to compute, more compact while remaining robust to scale, rotation and noise. To best address the current requirements, we propose a novel keypoint descriptor inspired by the human visual system and more precisely the retina, coined Fast Retina Keypoint (FREAK). A cascade of binary strings is computed by efficiently comparing image intensities over a retinal sampling pattern. Our experiments show that FREAKs are in general faster to compute with lower memory load and also more robust than SIFT, SURF or BRISK. They are thus competitive alternatives to existing keypoints in particular for embedded applications.

1,876 citations