scispace - formally typeset
Search or ask a question
Author

Fred W. Turek

Bio: Fred W. Turek is an academic researcher from Northwestern University. The author has contributed to research in topics: Circadian rhythm & Circadian clock. The author has an hindex of 80, co-authored 368 publications receiving 24552 citations. Previous affiliations of Fred W. Turek include University of Illinois at Chicago & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
13 May 2005-Science
TL;DR: Estimation of transcripts encoding selected hypothalamic peptides associated with energy balance was attenuated in the Clock mutant mice, suggesting that the circadian clock gene network plays an important role in mammalian energy balance.
Abstract: The CLOCK transcription factor is a key component of the molecular circadian clock within pacemaker neurons of the hypothalamic suprachiasmatic nucleus. We found that homozygous Clock mutant mice have a greatly attenuated diurnal feeding rhythm, are hyperphagic and obese, and develop a metabolic syndrome of hyperleptinemia, hyperlipidemia, hepatic steatosis, hyperglycemia, and hypoinsulinemia. Expression of transcripts encoding selected hypothalamic peptides associated with energy balance was attenuated in the Clock mutant mice. These results suggest that the circadian clock gene network plays an important role in mammalian energy balance.

2,241 citations

Journal ArticleDOI
29 Apr 1994-Science
TL;DR: The power of ENU mutagenesis combined with the ability to clone murine genes by map position provides a generally applicable approach to study complex behavior in mammals.
Abstract: In a search for genes that regulate circadian rhythms in mammals, the progeny of mice treated with N-ethyl-N-nitrosourea (ENU) were screened for circadian clock mutations. A semidominant mutation, Clock, that lengthens circadian period and abolishes persistence of rhythmicity was identified. Clock segregated as a single gene that mapped to the midportion of mouse chromosome 5, a region syntenic to human chromosome 4. The power of ENU mutagenesis combined with the ability to clone murine genes by map position provides a generally applicable approach to study complex behavior in mammals.

1,515 citations

Journal ArticleDOI
16 May 1997-Cell
TL;DR: CLOCK represents the second example of a PAS domain-containing clock protein (besides Drosophila PERIOD), which suggests that this motif may define an evolutionarily conserved feature of the circadian clock mechanism.

1,330 citations

Journal ArticleDOI
TL;DR: It is shown that a high-fat diet in mice leads to changes in the period of the locomotor activity rhythm and alterations in the expression and cycling of canonical circadian clock genes, nuclear receptors that regulate clock transcription factors, and clock-controlled genes involved in fuel utilization in the hypothalamus, liver, and adipose tissue.

1,289 citations

Journal ArticleDOI
01 Nov 2009-Obesity
TL;DR: Evidence is provided that nocturnal mice fed a high‐fat diet only during the 12‐h light phase gain significantly more weight than mice fed onlyDuring the 12-h dark phase.
Abstract: Studies of body weight regulation have focused almost entirely on caloric intake and energy expenditure. However, a number of recent studies in animals linking energy regulation and the circadian clock at the molecular, physiological, and behavioral levels raise the possibility that the timing of food intake itself may play a significant role in weight gain. The present study focused on the role of the circadian phase of food consumption in weight gain. We provide evidence that nocturnal mice fed a high-fat diet only during the 12-h light phase gain significantly more weight than mice fed only during the 12-h dark phase. A better understanding of the role of the circadian system for weight gain could have important implications for developing new therapeutic strategies for combating the obesity epidemic facing the human population today.

827 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: In this Review a model is developed to explain why different disorders emerge in individuals exposed to stress at different times in their lives.
Abstract: Chronic exposure to stress hormones, whether it occurs during the prenatal period, infancy, childhood, adolescence, adulthood or aging, has an impact on brain structures involved in cognition and mental health. However, the specific effects on the brain, behaviour and cognition emerge as a function of the timing and the duration of the exposure, and some also depend on the interaction between gene effects and previous exposure to environmental adversity. Advances in animal and human studies have made it possible to synthesize these findings, and in this Review a model is developed to explain why different disorders emerge in individuals exposed to stress at different times in their lives.

4,739 citations

Book
01 Jan 2006
TL;DR: The brain's default state: self-organized oscillations in rest and sleep, and perturbation of the default patterns by experience.
Abstract: Prelude. Cycle 1. Introduction. Cycle 2. Structure defines function. Cycle 3. Diversity of cortical functions is provided by inhibition. Cycle 4. Windows on the brain. Cycle 5. A system of rhythms: from simple to complex dynamics. Cycle 6. Synchronization by oscillation. Cycle 7. The brain's default state: self-organized oscillations in rest and sleep. Cycle 8. Perturbation of the default patterns by experience. Cycle 9. The gamma buzz: gluing by oscillations in the waking brain. Cycle 10. Perceptions and actions are brain state-dependent. Cycle 11. Oscillations in the "other cortex:" navigation in real and memory space. Cycle 12. Coupling of systems by oscillations. Cycle 13. The tough problem. References.

4,266 citations

Journal ArticleDOI
29 Aug 2002-Nature
TL;DR: Circadian rhythms are generated by one of the most ubiquitous and well-studied timing systems and are tamed by a master clock in the brain, which coordinates tissue-specific rhythms according to light input it receives from the outside world.
Abstract: Time in the biological sense is measured by cycles that range from milliseconds to years. Circadian rhythms, which measure time on a scale of 24 h, are generated by one of the most ubiquitous and well-studied timing systems. At the core of this timing mechanism is an intricate molecular mechanism that ticks away in many different tissues throughout the body. However, these independent rhythms are tamed by a master clock in the brain, which coordinates tissue-specific rhythms according to light input it receives from the outside world.

3,962 citations