scispace - formally typeset
Search or ask a question
Author

Freddy Cachazo

Bio: Freddy Cachazo is an academic researcher from Perimeter Institute for Theoretical Physics. The author has contributed to research in topics: Gauge theory & Scattering amplitude. The author has an hindex of 65, co-authored 118 publications receiving 19122 citations. Previous affiliations of Freddy Cachazo include Harvard University & Institute for Advanced Study.


Papers
More filters
Journal ArticleDOI
TL;DR: A short and direct proof of this recursion relation for tree-level scattering amplitudes based on properties of tree- level amplitudes only is given.
Abstract: Recently, by using the known structure of one-loop scattering amplitudes for gluons in Yang-Mills theory, a recursion relation for tree-level scattering amplitudes has been deduced. Here, we give a short and direct proof of this recursion relation based on properties of tree-level amplitudes only.

1,605 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented new recursion relations for tree amplitudes in gauge theory that give very compact formulas, in which all particles are on-shell and momentum conservation is preserved.

1,267 citations

Journal ArticleDOI
TL;DR: For scalar box functions with at least one massless external leg, the authors showed that the coefficients can also be obtained from quadruple cuts, which are not useful in Minkowski signature.

939 citations

Journal ArticleDOI
TL;DR: In this paper, a tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion.
Abstract: As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space.

853 citations

Journal ArticleDOI
TL;DR: A compact formula for the complete tree-level S-matrix of pure Yang-Mills and gravity theories in arbitrary spacetime dimensions is presented and Gauge invariance is completely manifest as it follows from a simple property of the Pfaffian.
Abstract: A new formula for the scattering of massless particles may simplify predictions and analyses of LHC experiments and shed new light on quantum gravity theories.

828 citations


Cited by
More filters
Journal ArticleDOI
01 Dec 1949-Nature
TL;DR: Wentzel and Jauch as discussed by the authors described the symmetrization of the energy momentum tensor according to the Belinfante Quantum Theory of Fields (BQF).
Abstract: To say that this is the best book on the quantum theory of fields is no praise, since to my knowledge it is the only book on this subject But it is a very good and most useful book The original was written in German and appeared in 1942 This is a translation with some minor changes A few remarks have been added, concerning meson theory and nuclear forces, also footnotes referring to modern work in this field, and finally an appendix on the symmetrization of the energy momentum tensor according to Belinfante Quantum Theory of Fields Prof Gregor Wentzel Translated from the German by Charlotte Houtermans and J M Jauch Pp ix + 224, (New York and London: Interscience Publishers, Inc, 1949) 36s

2,935 citations

Journal ArticleDOI
TL;DR: The ideas and the most important developments of the code are described and the capabilities of the MadGraph matrix element generator are illustrated through a few simple phenomenological examples.
Abstract: MadGraph 5 is the new version of the MadGraph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for Pythia 8, and full compatibility with FeynRules for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. MadGraph 5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples.

2,684 citations

Journal ArticleDOI
TL;DR: Sherpa as mentioned in this paper is a general-purpose tool for the simulation of particle collisions at high-energy colliders and contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models.
Abstract: In this paper the current release of the Monte Carlo event generator Sherpa, version 1.1, is presented. Sherpa is a general-purpose tool for the simulation of particle collisions at high-energy colliders. It contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models. The emission of additional QCD partons off the initial and final states is described through a parton-shower model. To consistently combine multi-parton matrix elements with the QCD parton cascades the approach of Catani, Krauss, Kuhn and Webber is employed. A simple model of multiple interactions is used to account for underlying events in hadron-hadron collisions. The fragmentation of partons into primary hadrons is described using a phenomenological cluster-hadronisation model. A comprehensive library for simulating tau-lepton and hadron decays is provided. Where available form-factor models and matrix elements are used, allowing for the inclusion of spin correlations; effects of virtual and real QED corrections are included using the approach of Yennie, Frautschi and Suura.

2,099 citations

20 Jul 1986

2,037 citations

Journal ArticleDOI
TL;DR: Sherpa as discussed by the authors is a general-purpose tool for the simulation of particle collisions at high-energy colliders and contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models.
Abstract: In this paper the current release of the Monte Carlo event generator Sherpa, version 1.1, is presented. Sherpa is a general-purpose tool for the simulation of particle collisions at high-energy colliders. It contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models. The emission of additional QCD partons off the initial and final states is described through a parton-shower model. To consistently combine multi-parton matrix elements with the QCD parton cascades the approach of Catani, Krauss, Kuhn and Webber is employed. A simple model of multiple interactions is used to account for underlying events in hadron--hadron collisions. The fragmentation of partons into primary hadrons is described using a phenomenological cluster-hadronisation model. A comprehensive library for simulating tau-lepton and hadron decays is provided. Where available form-factor models and matrix elements are used, allowing for the inclusion of spin correlations; effects of virtual and real QED corrections are included using the approach of Yennie, Frautschi and Suura.

1,911 citations