scispace - formally typeset
Search or ask a question
Author

Frede Blaabjerg

Bio: Frede Blaabjerg is an academic researcher from Aalborg University. The author has contributed to research in topics: Inverter & Wind power. The author has an hindex of 147, co-authored 2161 publications receiving 112017 citations. Previous affiliations of Frede Blaabjerg include Sharif University of Technology & Xiangtan University.


Papers
More filters
Journal ArticleDOI
TL;DR: The aim of this paper is to propose a flexible active power control based on a fast current controller and a reconfigurable reference current selector that facilitates multiple choices for fault ride through by simply changing the reference selection criteria.
Abstract: The increasing penetration of distributed power generation into the power system leads to a continuous evolution of grid interconnection requirements. In particular, active power control will play an important role both during grid faults (low-voltage ride-through capability and controlled current injection) and in normal conditions (reserve function and frequency regulation). The aim of this paper is to propose a flexible active power control based on a fast current controller and a reconfigurable reference current selector. Several strategies to select the current reference are studied and compared using experimental results that are obtained during an unsymmetrical voltage fault. The results of the analysis allow selection of the best reference current in every condition. The proposed methods facilitate multiple choices for fault ride through by simply changing the reference selection criteria.

690 citations

Journal ArticleDOI
TL;DR: The performance of power electronic systems, especially in terms of efficiency and power density, has continuously improved by the intensive research and advancements in circuit topologies, control schemes, semiconductors, passive components, digital signal processors, and system integration technologies.
Abstract: A new era of power electronics was created with the invention of the thyristor in 1957. Since then, the evolution of modern power electronics has witnessed its full potential and is quickly expanding in the applications of generation, transmission, distribution, and end-user consumption of electrical power. The performance of power electronic systems, especially in terms of efficiency and power density, has been continuously improved by the intensive research and advancements in circuit topologies, control schemes, semiconductors, passive components, digital signal processors, and system integration technologies.

689 citations

Proceedings ArticleDOI
08 Oct 2000
TL;DR: In this article, the authors proposed a direct power control (DPC) of three-phase pulsewidth-modulated rectifiers without line voltage sensors, which is based on virtual flux (VF) estimation.
Abstract: In this paper, direct power control (DPC) of three-phase pulsewidth-modulated rectifiers without line voltage sensors is presented. The new system is based on virtual flux (VF) estimation. Theoretical principles of this method are discussed. The steady-state and dynamic behavior of VF-DPC are presented that illustrate the operation and performance of the proposed system compared to a conventional DPC method. Both strategies are also investigated under unbalance and predistorted grid. It is shown that the VF-DPC exhibits several advantages, particularly providing sinusoidal line current when the supply voltage is not ideal. Test results show the excellent performance of the proposed system.

688 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid system consisting of a proportional integral (PI) controller plus a generic hth harmonic resonant controller implemented in a frame rotating at the n th harmonic frequency is discussed in detail.
Abstract: Voltage source inverters connected to the grid in applications such as active rectifiers, active filters, uninterruptible power supplies, and distributed generation systems need an optimal ac current control. To obtain zero steady-state error at the fundamental frequency (i.e., unity power factor), the use of a standard integrator in a rotating frame is as effective as the use of a resonant controller in a stationary frame. However, the grid voltage harmonics influence the current controller and generate current harmonics unless several integrators in multiple rotating frames or resonant compensators in a stationary frame are adopted. In this letter, a hybrid system consisting of a proportional integral (PI) controller plus a generic hth harmonic resonant controller implemented in a frame rotating at the n th harmonic frequency is discussed in detail. The hth harmonic controller is able to decrease both the (h - n)th and (h + n)th harmonics, while the PI controller is able to decrease other harmonics if the synchronization phase signal adopted for the frame transformation is unfiltered. It is demonstrated that the use of a PI and sixth harmonic resonant compensator is effective for both positive and negative sequence fifth and seventh harmonics; hence, four harmonics are compensated with the proportional integral-resonant (PI-RES) controller implemented in a synchronous frame. Simulation and experimental tests validate the proposed analysis

662 citations

Journal ArticleDOI
15 Sep 2011
TL;DR: In this article, the authors investigated on the active and reactive power sharing of an autonomous hybrid microgrid, which comprises dc and ac sub-grids, interconnected by power electronic interfaces.
Abstract: This paper investigates on the active and reactive power sharing of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac sub-grids, interconnected by power electronic interfaces. The main challenge here is to manage the power flow among all the sources distributed throughout the two types of sub-grids, which certainly is tougher than previous efforts developed for only either ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc sources, ac sources and interlinking converters. Suitable control and normalization schemes are therefore developed for controlling them with results presented for showing the overall performance of the hybrid microgrid.

620 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-Clamped (flying capacitor), and cascaded multicell with separate DC sources are presented and the circuit topology options are presented.
Abstract: Multilevel inverter technology has emerged recently as a very important alternative in the area of high-power medium-voltage energy control. This paper presents the most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-clamped (flying capacitor), and cascaded multicell with separate DC sources. Emerging topologies like asymmetric hybrid cells and soft-switched multilevel inverters are also discussed. This paper also presents the most relevant control and modulation methods developed for this family of converters: multilevel sinusoidal pulsewidth modulation, multilevel selective harmonic elimination, and space-vector modulation. Special attention is dedicated to the latest and more relevant applications of these converters such as laminators, conveyor belts, and unified power-flow controllers. The need of an active front end at the input side for those inverters supplying regenerative loads is also discussed, and the circuit topology options are also presented. Finally, the peripherally developing areas such as high-voltage high-power devices and optical sensors and other opportunities for future development are addressed.

6,472 citations

Journal ArticleDOI
TL;DR: An overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines is given and the possibility of compensation for low-order harmonics is discussed.
Abstract: Renewable energy sources like wind, sun, and hydro are seen as a reliable alternative to the traditional energy sources such as oil, natural gas, or coal. Distributed power generation systems (DPGSs) based on renewable energy sources experience a large development worldwide, with Germany, Denmark, Japan, and USA as leaders in the development in this field. Due to the increasing number of DPGSs connected to the utility network, new and stricter standards in respect to power quality, safe running, and islanding protection are issued. As a consequence, the control of distributed generation systems should be improved to meet the requirements for grid interconnection. This paper gives an overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines. In addition, control structures of the grid-side converter are presented, and the possibility of compensation for low-order harmonics is also discussed. Moreover, control strategies when running on grid faults are treated. This paper ends up with an overview of synchronization methods and a discussion about their importance in the control

4,655 citations

Journal ArticleDOI
TL;DR: New trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented and a review of the appropriate storage-system technology used for the Integration of intermittent renewable energy sources is introduced.
Abstract: The use of distributed energy resources is increasingly being pursued as a supplement and an alternative to large conventional central power stations. The specification of a power-electronic interface is subject to requirements related not only to the renewable energy source itself but also to its effects on the power-system operation, especially where the intermittent energy source constitutes a significant part of the total system capacity. In this paper, new trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented. A review of the appropriate storage-system technology used for the integration of intermittent renewable energy sources is also introduced. Discussions about common and future trends in renewable energy systems based on reliability and maturity of each technology are presented

3,799 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid and categorize the inverters into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single phase grid; 3) whether they utilizes a transformer (either line or high frequency) or not; and 4) the kind of grid-connected power stage.
Abstract: This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single-phase grid; 3) whether they utilizes a transformer (either line or high frequency) or not; and 4) the type of grid-connected power stage. Various inverter topologies are presented, compared, and evaluated against demands, lifetime, component ratings, and cost. Finally, some of the topologies are pointed out as the best candidates for either single PV module or multiple PV module applications.

3,530 citations

Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations