scispace - formally typeset
Search or ask a question
Author

Frédéric Habouzit

Bio: Frédéric Habouzit is an academic researcher from Institut national de la recherche agronomique. The author has contributed to research in topics: Chemical oxygen demand & Anaerobic digestion. The author has an hindex of 9, co-authored 16 publications receiving 1130 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The bacterial community structure of a fluidized-bed reactor fed by vinasses (wine distillation waste) was analyzed and four small-subunit (SSU) rDNA clone libraries of Bacteria, Archaea, Procarya, and Eucarya populations were established.
Abstract: The bacterial community structure of a fluidized-bed reactor fed by vinasses (wine distillation waste) was analyzed. After PCR amplification, four small-subunit (SSU) rDNA clone libraries of Bacteria, Archaea, Procarya, and Eucarya populations were established. The community structure was determined by operational taxonomic unit (OTU) phylogenetic analyses of 579 partial rDNA sequences (about 500 bp long). A total of 146 OTUs were found, comprising 133, 6, and 7 from the Bacteria, Archaea, and Eucarya domains, respectively. A total of 117 bacterial OTU were affiliated with major phyla: low-G+C gram-positive bacteria, Cytophaga-Flexibacter-Bacteroides, Proteobacteria, high-G+C gram-positive bacteria, and Spirochaetes, where the clone distribution was 34, 26, 17, 6, and 4%, respectively. The other 16 bacterial OTUs represent 13% of the clones. They were either affiliated with narrow phyla such as Planctomyces-Chlamydia, green nonsulfur bacteria, or Synergistes, or deeply branched on the phylogenetic tree. A large number of bacterial OTUs are not closely related to any other hitherto determined sequences. The most frequent bacterial OTUs represents less than 5% of the total bacterial SSU rDNA sequences. However, the 20 more frequent bacterial OTUs describe at least 50% of these sequences. Three of the six Archaea OTUs correspond to 95% of the Archaea population and are very similar to already known methanogenic species: Methanosarcina barkeri, Methanosarcina frisius, and Methanobacterium formicicum. In contrast, the three other Archaea OTUs are unusual and are related to thermophilic microorganisms such as Crenarchaea or Thermoplasma spp. Five percent of the sequences analyzed were chimeras and were removed from the analysis.

838 citations

Journal ArticleDOI
TL;DR: Denitrification of a high-strength synthetic wastewater was carried out using a wine distillery effluent as an example of an industrial carbon source (22.7 ǫg chemical oxygen demand l-1) as mentioned in this paper.
Abstract: Denitrification of a high-strength synthetic wastewater (150 g NO- 3 l-1) was carried out using a wine distillery effluent as an example of an industrial carbon source (22.7 g chemical oxygen demand l-1). Two configurations were tested: one consisted of an acidogenesis reactor followed by a denitrifying reactor and the other was a single reactor directly fed with the raw effluents. In both cases, denitrification was achieved at a nitrate load of 9.54 g NO- 3 l-1 day-1 (2.19 g N as NO- 3 l-1 day-1) with good specific reduction rates: 32.6 mg and 35.2 mg N as NO x g volatile suspended solids h-1, calculated on a single day, for the two-step and the one-step process respectively. Dissimilatory nitrate reduction to ammonium did not occur, even in the one-step process.

72 citations

Journal ArticleDOI
TL;DR: The overall adhesion on the supports was influenced mainly by total surface energy, and the adhered communities were different from the parent inocula, including the Archaea/Bacteria ratio.

54 citations

Journal ArticleDOI
TL;DR: A bench-scale sequencing batch reactor was inoculated with halophilic sediments in order to treat an agri-food effluent containing 120 g salt l-1 and the micro-organisms were able to treat carbon and nitrogen, provided the pH in the reactor was neutralised with phosphoric acid.
Abstract: Hypersaline effluents are produced by various industrial activities. Such wastewater, rich in both organic matter and salt (> 35 g l-1), is difficult to treat by conventional wastewater treatment processes. It is necessary to use halophilic bacteria. In this study, a bench-scale sequencing batch reactor (SBR) was inoculated with halophilic sediments in order to treat an agri-food effluent containing 120 g salt l-1. The micro-organisms were able to treat carbon and nitrogen, provided the pH in the reactor was neutralised with phosphoric acid. Soluble COD and Soluble TKN removal attained 83% and 72% respectively. 16S rDNA identification of the halophilic microbial community showed high diversity.

53 citations

Journal ArticleDOI
TL;DR: The composition of the inoculum was shown to have a major impact on the bacterial composition ofThe biofilm, whatever the nature of the support material or the organic loading rate applied to the reactors during the start‐up period.
Abstract: To evaluate the impact of the nature of the support material on its colonization by a methanogenic consortium, four substrata made of different materials: polyvinyl chloride, 2 polyethylene and polypropylene were tested during the start-up of lab-scale fixed-film reactors. The reactor performances were evaluated and compared together with the analysis of the biofilms. Biofilm growth was quantified and the structure of bacterial and archaeal communities were characterized by molecular fingerprinting profiles (capillary electrophoresis-single strand conformation polymorphism). The composition of the inoculum was shown to have a major impact on the bacterial composition of the biofilm, whatever the nature of the support material or the organic loading rate applied to the reactors during the start-up period. In contrast, the biofilm archaeal populations were independent of the inoculum used but highly dependent on the support material. Supports favouring Archaea colonization, the limiting factor in the overall process, should be preferred.

50 citations


Cited by
More filters
Journal ArticleDOI
12 May 2011-Nature
TL;DR: Three robust clusters (referred to as enterotypes hereafter) are identified that are not nation or continent specific and confirmed in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous.
Abstract: Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.

5,566 citations

Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance.
Abstract: Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.

4,981 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: The authors' perspective on microbial diversity has improved enormously over the past few decades in large part due to molecular phylogenetic studies that objectively relate organisms.
Abstract: Our perspective on microbial diversity has improved enormously over the past few decades. In large part this has been due to molecular phylogenetic studies that objectively relate organisms. Phylogenetic trees based on gene sequences are maps with which to articulate the elusive concept of

2,323 citations