scispace - formally typeset
Search or ask a question
Author

Frédéric Parrenin

Bio: Frédéric Parrenin is an academic researcher from University of Grenoble. The author has contributed to research in topics: Ice core & Ice sheet. The author has an hindex of 42, co-authored 103 publications receiving 11727 citations. Previous affiliations of Frédéric Parrenin include Centre national de la recherche scientifique & Joseph Fourier University.


Papers
More filters
Journal ArticleDOI
10 Jun 2004-Nature
TL;DR: The recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years is reported, suggesting that without human intervention, a climate similar to the present one would extend well into the future.
Abstract: The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago ( Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long - 28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.

1,995 citations

Journal ArticleDOI
10 Aug 2007-Science
TL;DR: It is suggested that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records.
Abstract: A high-resolution deuterium profile is now available along the entire European Project for Ice Coring in Antarctica Dome C ice core, extending this climate record back to marine isotope stage 20.2, ∼800,000 years ago. Experiments performed with an atmospheric general circulation model including water isotopes support its temperature interpretation. We assessed the general correspondence between Dansgaard-Oeschger events and their smoothed Antarctic counterparts for this Dome C record, which reveals the presence of such features with similar amplitudes during previous glacial periods. We suggest that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records.

1,723 citations

Journal ArticleDOI
Carlo Barbante1, J. M. Barnola1, J. M. Barnola2, Silvia Becagli1, J. Beer1, J. Beer3, M. Bigler1, Claude F. Boutron2, Claude F. Boutron1, Thomas Blunier1, E. Castellano1, Olivier Cattani, Jérôme Chappellaz1, Jérôme Chappellaz2, Dorthe Dahl-Jensen1, Maxime Debret2, Barbara Delmonte, D. Dick, S. Falourd, Sérgio H. Faria1, Urs Federer1, Hubertus Fischer, Johannes Freitag, Andreas Frenzel, Diedrich Fritzsche, Felix Fundel, Paolo Gabrielli2, Vania Gaspari, Rainer Gersonde, Wolfgang Graf, D. Grigoriev4, Ilka Hamann, Margareta Hansson, George R. Hoffmann, Hutterli5, Philippe Huybrechts, Elisabeth Isaksson6, Sigfus J Johnsen, Jean Jouzel, M. Kaczmarska6, Torbjörn Karlin, Patrik R Kaufmann, S. Kipfstuhl, Mika Kohno, Fabrice Lambert, Astrid Lambrecht, Amaelle Landais, Gunther Lawer, Markus Leuenberger, Geneviève C Littot5, L. Loulergue2, Dieter Lüthi, Valter Maggi, F. Marino, Valérie Masson-Delmotte, Hanno Meyer, Heinrich Miller, Robert Mulvaney5, Biancamaria Narcisi, Johannes Oerlemans, H. Oerter, Frédéric Parrenin2, J. R. Petit2, Grant M. Raisbeck, Dominique Raynaud2, Regine Röthlisberger5, U. Ruth, Oleg Rybak, Mirko Severi, Jochen Schmitt, Jakob Schwander, Urs Siegenthaler, M.-L. Siggaard-Andersen1, Renato Spahni, Jørgen Peder Steffensen1, Barbara Stenni7, Thomas F. Stocker, Jean-Louis Tison, Rita Traversi, Roberto Udisti, Fernando Valero-Delgado, M. R. van den Broeke, R. S. W. van de Wal, Dietmar Wagenbach, Anna Wegner, K. Weiler, Frank Wilhelms, Jan-Gunnar Winther6, Eric W. Wolff5 
09 Nov 2006-Nature
TL;DR: In this paper, a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records was presented.
Abstract: Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth's climate dynamics. For the last glacial period, ice core studies1, 2 have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland3, 4, 5 through the Atlantic meridional overturning circulation6, 7, 8. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland9, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.

1,074 citations

Journal ArticleDOI
TL;DR: The Greenland Ice Core Chronology 2005 (GICC05) as discussed by the authors is a time scale based on annual layer counting of high-resolution records from Greenland ice cores, which continuously covers the past 60 ka.
Abstract: . The Greenland Ice Core Chronology 2005 (GICC05) is a time scale based on annual layer counting of high-resolution records from Greenland ice cores. Whereas the Holocene part of the time scale is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores, the glacial part is solely based on NorthGRIP records. Here we present an 18 ka extension of the time scale such that GICC05 continuously covers the past 60 ka. The new section of the time scale places the onset of Greenland Interstadial 12 (GI-12) at 46.9±1.0 ka b2k (before year AD 2000), the North Atlantic Ash Zone II layer in GI-15 at 55.4±1.2 ka b2k, and the onset of GI-17 at 59.4±1.3 ka b2k. The error estimates are derived from the accumulated number of uncertain annual layers. In the 40–60 ka interval, the new time scale has a discrepancy with the Meese-Sowers GISP2 time scale of up to 2.4 ka. Assuming that the Greenland climatic events are synchronous with those seen in the Chinese Hulu Cave speleothem record, GICC05 compares well to the time scale of that record with absolute age differences of less than 800 years throughout the 60 ka period. The new time scale is generally in close agreement with other independently dated records and reference horizons, such as the Laschamp geomagnetic excursion, the French Villars Cave and the Austrian Kleegruben Cave speleothem records, suggesting high accuracy of both event durations and absolute age estimates.

965 citations

Journal ArticleDOI
23 Aug 2007-Nature
TL;DR: The results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation.
Abstract: The Milankovitch theory of climate change proposes that glacial–interglacial cycles are driven by changes in summer insolation at high northern latitudes. The timing of climate change in the Southern Hemisphere at glacial–interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores. This ratio is a proxy for local summer insolation5, and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations

466 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer
Abstract: Additional co-authors: TJ Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer

13,605 citations

Journal ArticleDOI
TL;DR: In this paper, a 53-Myr stack (LR04) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm is presented.
Abstract: [1] We present a 53-Myr stack (the “LR04” stack) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm This is the first benthic δ18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the δ18O stack to a simple ice model based on 21 June insolation at 65°N Stacked sedimentation rates provide additional age model constraints to prevent overtuning Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 53 Myr and in the precession band for more than half of the record The LR04 stack contains significantly more variance in benthic δ18O than previously published stacks of the late Pleistocene as the result of higher-resolution records, a better alignment technique, and a greater percentage of records from the Atlantic Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of δ18O from 27–16 Ma is primarily a deep-water temperature signal and that the phase of δ18O precession response changed suddenly at 16 Ma

6,186 citations

Journal ArticleDOI
14 Dec 2007-Science
TL;DR: As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.
Abstract: Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.

4,422 citations

Journal ArticleDOI
TL;DR: In this article, the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP.
Abstract: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.

2,800 citations

Journal ArticleDOI
07 Aug 2009-Science
TL;DR: The responses of the Northern and Southern Hemispheres differed significantly, which reveals how the evolution of specific ice sheets affected sea level and provides insight into how insolation controlled the deglaciation.
Abstract: We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ~14.5 ka.

2,691 citations