scispace - formally typeset
Search or ask a question
Author

Frédéric Santoul

Bio: Frédéric Santoul is an academic researcher from University of Toulouse. The author has contributed to research in topics: Catfish & Population. The author has an hindex of 21, co-authored 75 publications receiving 1230 citations. Previous affiliations of Frédéric Santoul include Paul Sabatier University & Ecolab.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within‐species biodiversity for understanding ecological dynamics.
Abstract: Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity-ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within-species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non-linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity-function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within-species biodiversity for understanding ecological dynamics.

159 citations

Journal ArticleDOI
TL;DR: This review aimed to understand how stable isotope analyses have been used and how they have provided new insights into the ecological impacts of non-native freshwater fishes, and to establish the current state-of-the-art.
Abstract: Freshwater fish ecology has greatly benefited from the use of innovative tools such as stable isotope analysis to determine the ecological effects of non-native fishes. Stable isotope analyses are based on the predictable relationship between the isotope composition of a consumer and its prey, and have become increasingly popular amongst aquatic ecologists. In parallel, they have been implemented as a sensitive, cost-effective and temporally integrative tool to analyse the trophic interactions between native and non-native species, and to detect some subtle ecological effects of human activities, such as the introduction of non-native freshwater fish species. This review aimed to understand how stable isotope analyses have been used and how they have provided new insights into the ecological impacts of non-native freshwater fishes. Specifically, the published literature (45 articles) was reviewed to establish the current state-of-the-art. The use of stable isotope analyses in the field is still an emerging approach. The majority of studies were conducted on lentic ecosystems in North America targeting three main families of non-native fish species. Measurements were most commonly made with carbon and nitrogen stable isotopes using muscle samples. The most recent theoretical and methodological advances were illustrated by selecting some case studies conducted with different non-native species and biotic interactions. Finally, several recommendations for an optimised use of stable isotope analyses for freshwater ecological studies related to trophic interactions of non-native freshwater fish species were established.

87 citations

Journal ArticleDOI
TL;DR: An elevated level of dietary overlap was observed between the non-native and native salmonids when in co-occurrence and this dietary convergence is more likely to be due to behavioural interactions than to variations in food availability or fish displacements.
Abstract: The potential trophic impact of introduced brook trout Salvelinus fontinalis on native brown trout Salmo trutta in a mountain stream (south-west France) was investigated using stable isotope analysis (SIA). The isotopic signatures (δ13C and δ15N) of S. fontinalis were similar regardless of the absence or presence of S. trutta, and SIA mixing models revealed that S. fontinalis diet consisted mainly of terrestrial invertebrates. Conversely, a significant shift in S. trutta isotopic signatures (depletion of 1·6‰δ13C and enrichment of 0·6‰δ15N) was observed in sympatry with S. fontinalis; this may be due to a dietary shift towards terrestrial invertebrates. Contrary to an expected dietary divergence in sympatry, an elevated level of dietary overlap was observed between the non-native and native salmonids when in co-occurrence. This dietary convergence is more likely to be due to behavioural interactions than to variations in food availability or fish displacements.

71 citations

Journal ArticleDOI
TL;DR: The most recent knowledge on the current distribution and the ecology of the European catfish are reviewed and a series of key research questions are identified that should stimulate new research on this intriguing, yet largely unknown, species.
Abstract: The extreme body sizes of megafishes associated with their high commercial values and recreational interests have made them highly threatened in their native range worldwide by human-induced impacts such as overexploitation. Meanwhile, some megafishes have been introduced outside of their native range. A notable example is the European catfish (Silurus glanis), one of the few siluriforms native to Eastern Europe. It is among the 20 largest freshwater fish worldwide, attaining a total length over 2.7 m and a documented mass of 130 kg. Its distinct phylogeny and extreme size imply many features that are rare among other European fish, including novel behaviours (massive aggregations, beaching), consumption of large bodied prey, fast growth rates, long lifespan, high fecundity, nest guarding and large egg sizes. The spread of the species is likely to continue due to illegal introductions, primarily for recreational angling, coupled with natural range extension associated with climate change. Here, the most recent knowledge on the current distribution and the ecology of the species are reviewed. A series of key research questions are identified that should stimulate new research on this intriguing, yet largely unknown, species and, more generally, on the ecology of freshwater invaders.

59 citations

Journal ArticleDOI
05 Dec 2012-PLOS ONE
TL;DR: The occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish to capture birds on land is reported, suggesting that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.
Abstract: The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ13C and δ15N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.

59 citations


Cited by
More filters
01 Jan 2016
TL;DR: Dillman and Smyth as mentioned in this paper described the Tailored design method as a "tailored design methodology" and used it in their book "The Tailored Design Method: A Manual for Personalization".
Abstract: Resena de la obra de Don A. Dillman, Jolene D. Smyth y Leah Melani Christian: Internet, Phone, Mail and Mixed-Mode Surveys. The Tailored Design Method. New Jersey: John Wiley and Sons

1,467 citations

Journal ArticleDOI
TL;DR: Elton's "The Ecology of Invasions by Animals and Plants" as mentioned in this paper is one of the most cited books on invasion biology, and it provides an accessible, engaging introduction to the most important environmental crises of our time.
Abstract: Much as Rachel Carson's \"Silent Spring\" was a call to action against the pesticides that were devastating bird populations, Charles S. Elton's classic \"The Ecology of Invasions by Animals and Plants\" sounded an early warning about an environmental catastrophe that has become all too familiar today-the invasion of nonnative species. From kudzu to zebra mussels to Asian long-horned beetles, nonnative species are colonizing new habitats around the world at an alarming rate thanks to accidental and intentional human intervention. One of the leading causes of extinctions of native animals and plants, invasive species also wreak severe economic havoc, causing $79 billion worth of damage in the United States alone. Elton explains the devastating effects that invasive species can have on local ecosystems in clear, concise language and with numerous examples. The first book on invasion biology, and still the most cited, Elton's masterpiece provides an accessible, engaging introduction to one of the most important environmental crises of our time. Charles S. Elton was one of the founders of ecology, who also established and led Oxford University's Bureau of Animal Population. His work has influenced generations of ecologists and zoologists, and his publications remain central to the literature in modern biology. \"History has caught up with Charles Elton's foresight, and \"The Ecology of Invasions\" can now be seen as one of the central scientific books of our century.\"-David Quammen, from the Foreword to \"Killer Algae: The True Tale of a Biological Invasion\

1,321 citations

Journal ArticleDOI
TL;DR: This review provides a contemporary account of knowledge on aspects of introductions of non-native fish species and includes issues associated with introduction pathways, ecological and economic impacts, risk assessments, management options and impact of climate change.
Abstract: This review provides a contemporary account of knowledge on aspects of introductions of non-native fish species and includes issues associated with introduction pathways, ecological and economic impacts, risk assessments, management options and impact of climate change. It offers guidance to reconcile the increasing demands of certain stakeholders to diversify their activities using non-native fishes with the long-term sustainability of native aquatic biodiversity. The rate at which non-native freshwater fishes have been introduced worldwide has doubled in the space of 30 years, with the principal motives being aquaculture (39%) and improvement of wild stocks (17%). Economic activity is the principal driver of human-mediated non-native fish introductions, including the globalization of fish culture, whereby the production of the African cichlid tilapia is seven times higher in Asia than in most areas of Africa, and Chile is responsible for c. 30% of the world's farmed salmon, all based on introduced species. Consequently, these economic benefits need balancing against the detrimental environmental, social and economic effects of introduced non-native fishes. There are several major ecological effects associated with non-native fish introductions, including predation, habitat degradation, increased competition for resources, hybridization and disease transmission. Consideration of these aspects in isolation, however, is rarely sufficient to adequately characterize the overall ecological effect of an introduced species. Regarding the management of introduced non-native fish, pre-introduction screening tools, such as the fish invasiveness scoring kit (FISK), can be used to ensure that species are not introduced, which may develop invasive populations. Following the introduction of non-native fish that do develop invasive populations, management responses are typified by either a remediation or a mitigation response, although these are often difficult and expensive to implement, and may have limited effectiveness.

683 citations