scispace - formally typeset
Search or ask a question
Author

Frederic Zenhausern

Other affiliations: Motorola, Translational Genomics Research Institute, IBM  ...read more
Bio: Frederic Zenhausern is an academic researcher from University of Arizona. The author has contributed to research in topics: Medicine & Biodosimetry. The author has an hindex of 31, co-authored 126 publications receiving 3857 citations. Previous affiliations of Frederic Zenhausern include Motorola & Translational Genomics Research Institute.


Papers
More filters
Journal ArticleDOI
25 Aug 1995-Science
TL;DR: Interferometric near-field optical microscopy achieving a resolution of 10 angstroms is demonstrated, sensing the dipole-dipole coupling of two externally driven dipoles as their spacing is modulated.
Abstract: Interferometric near-field optical microscopy achieving a resolution of 10 angstroms is demonstrated. The scattered electric field variation caused by a vibrating probe tip in close proximity to a sample surface is measured by encoding it as a modulation in the optical phase of one arm of an interferometer. Unlike in regular near-field optical microscopes, where the contrast results from a weak source (or aperture) dipole interacting with the polarizability of the sample, the present form of imaging relies on a fundamentally different contrast mechanism: sensing the dipole-dipole coupling of two externally driven dipoles (the tip and sample dipoles) as their spacing is modulated.

644 citations

Journal ArticleDOI
TL;DR: The ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions is demonstrated.
Abstract: We thank the scientists and technical staff of the Luxembourg Centre for Systems Biomedicine and Center for Applied Nanobioscience and Medicine, particularly Matthew Barrett and Brett Duane for their excellent technical assistance and engineering support We are grateful to Francois Bernardin, Nathalie Nicot and Laurent Vallar for the microarray analysis; Aidos Baumuratov for imaging support; Linda Wampach for HuMiX illustrations; and Anna Heintz-Buschart for fruitful discussions This work was supported by an ATTRACT programme grant (ATTRACT/A09/03), a CORE programme grant (CORE/11/BM/1186762), a European Union Joint Programming in Neurodegenerative Diseases grant (INTER/JPND/12/01) and a Proof-of-Concept grant (PoC-15/11014639) to PW, Accompany Measures mobility grant (12/AM2c/05) to PW and PS, an INTER mobility grant to PS (INTER/14/7516918), and an Aide a la Formation Recherche (AFR) postdoctoral grant (AFR/PDR 2013-1/BM/5821107) as well as a CORE programme grant (CORE/14/BM/8066232) to JVF, all funded by the Luxembourg National Research Fund (FNR) This work was further supported by a grant attributed to CS-D by the 'Fondation Recherche sur le SIDA du Luxembourg' Bioinformatics analyses presented in this paper were carried out in part using the HPC facilities of the University of Luxembourg (http://hpcunilu)

428 citations

Journal ArticleDOI
TL;DR: Results include the imaging of E. coli RNA polymerase bound to DNA in a propanol-water mixture and the observation that washing samples in the AFM is an effective way of disaggregating salt-DNA complexes.
Abstract: DNA on mica can be imaged in the atomic force microscope (AFM) in water or in some buffers if the sample has first been dehydrated thoroughly with propanol or by baking in vacuum and if the sample is imaged with a tip that has been deposited in the scanning electron microscope (SEM). Without adequate dehydration or with an unmodified tip, the DNA is scraped off the substrate by AFM-imaging in aqueous solutions. The measured heights and widths of DNA are larger in aqueous solutions than in propanol. The measured lengths of DNA molecules are the same in propanol and in aqueous solutions and correspond to the base spacing for B-DNA, the hydrated form of DNA; when the DNA is again imaged in propanol after buffer, however, it shortens to the length expected for dehydrated A-DNA. Other results include the imaging of E. coli RNA polymerase bound to DNA in a propanol-water mixture and the observation that washing samples in the AFM is an effective way of disaggregating salt-DNA complexes. The ability to image DNA in aqueous solutions has potential applications for observing processes involving DNA in the AFM.

207 citations

Journal ArticleDOI
TL;DR: In this paper, a segmented, linear array of microdischarges, fabricated in a ceramic multilayer structure and having an active length of ~1?cm and a clear aperture of 80? 360m2, exhibits evidence of gain on the 460.3 nm transition of Xe+, making it the first example of a microdischarge-driven optical amplifier.
Abstract: Recent advances in the development of microplasma devices fabricated in a variety of materials systems (Si, ceramic multilayers, and metal/polymer structures) and configurations are reviewed. Arrays of microplasma emitters, having inverted pyramidal Si electrodes or produced in ceramic multilayer sandwiches with integrated ballasting for each pixel, have been demonstrated and arrays as large as 30 ? 30 pixels are described. A new class of photodetectors, hybrid semiconductor/microplasma devices, is shown to exhibit photoresponsivities in the visible and near-infrared that are more than an order of magnitude larger than those typical of semiconductor avalanche photodiodes. Microdischarge devices having refractory or piezoelectric dielectric films such as Al2O3 or BN have extended lifetimes (~86% of initial radiant output after 100?h with an Al2O3 dielectric) and controllable electrical characteristics. A segmented, linear array of microdischarges, fabricated in a ceramic multilayer structure and having an active length of ~1?cm and a clear aperture of 80 ? 360??m2, exhibits evidence of gain on the 460.3 nm transition of Xe+, making it the first example of a microdischarge-driven optical amplifier.

141 citations

Journal ArticleDOI
TL;DR: Several examples where a sample-to-answer, lab-on-a-chip chemical analysis system may benefit from EDEP technology in upstream sample preparation and in a back-end detection platform for hybridization and sensitivity enhancement were presented.
Abstract: Several examples where a sample-to-answer, lab-on-a-chip chemical analysis system may benefit from EDEP technology in upstream sample preparation (cell sorting, cell lysing, DNA concentration, and purification) and in a back-end detection platform for hybridization and sensitivity enhancement were presented. The simplicity of the device and the lack of metallic electrodes at the trap, which cause electrochemical reactions involving gas evolution, made possible the investigation of the response of biological objects in a wide range of frequencies, especially the low-frequency regime. Above all, EDEP may be seamlessly integrated with the metallic DEP layout, this increasing the flexibility in custom-tailored chip design.

127 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Book
01 Jan 2006
TL;DR: In this paper, the authors proposed a method for propagating and focusing of optical fields in a nano-optics environment using near-field optical probes and probe-sample distance control.
Abstract: 1. Introduction 2. Theoretical foundations 3. Propagation and focusing of optical fields 4. Spatial resolution and position accuracy 5. Nanoscale optical microscopy 6. Near-field optical probes 7. Probe-sample distance control 8. Light emission and optical interaction in nanoscale environments 9. Quantum emitters 10. Dipole emission near planar interfaces 11. Photonic crystals and resonators 12. Surface plasmons 13. Forces in confined fields 14. Fluctuation-induced phenomena 15. Theoretical methods in nano-optics Appendices Index.

3,772 citations

Journal ArticleDOI
Chengliang Wang1, Huanli Dong1, Wenping Hu1, Yunqi Liu1, Daoben Zhu1 
TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Abstract: Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional inorganic solid state electronics because the structural versatility of organic semiconductors allows for the incorporation of functionality by molecular design. This versatility leads to a new era in the design of electronic devices. To date, the great number of π-conjugated semiconducting materials that have either been discovered or synthesized generate an exciting library of π-conjugated systems for use in organic electronics. 11 However, some key challenges for further advancement remain: the low mobility and stability of organic semiconductors, the lack of knowledge regarding structure property relationships for understanding the fundamental chemical aspects behind the structural design, and realization of desired properties. Organic field-effect transistors (OFETs) are a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals (drain, source, and gate electrodes). OFETs are not only essential building blocks for the next generation of cheap and flexible organic circuits, but they also provide an important insight into the charge transport of πconjugated systems. Therefore, they act as strong tools for the exploration of the structure property relationships of πconjugated systems, such as parameters of field-effect mobility (μ, the drift velocity of carriers under unit electric field), current on/off ratio (the ratio of the maximum on-state current to the minimum off-state current), and threshold voltage (the minimum gate voltage that is required to turn on the transistor). 17 Since the discovery of OFETs in the 1980s, they have attracted much attention. Research onOFETs includes the discovery, design, and synthesis of π-conjugated systems for OFETs, device optimization, development of applications in radio frequency identification (RFID) tags, flexible displays, electronic papers, sensors, and so forth. It is beyond the scope of this review to cover all aspects of π-conjugated systems; hence, our focus will be on the performance analysis of π-conjugated systems in OFETs. This should make it possible to extract information regarding the fundamental merit of semiconducting π-conjugated materials and capture what is needed for newmaterials and what is the synthesis orientation of newπ-conjugated systems. In fact, for a new science with many practical applications, the field of organic electronics is progressing extremely rapidly. For example, using “organic field effect transistor” or “organic field effect transistors” as the query keywords to search the Web of Science citation database, it is possible to show the distribution of papers over recent years as shown in Figure 1A. It is very clear

2,942 citations