scispace - formally typeset
Search or ask a question
Author

Frederick Chesneau

Other affiliations: University of St Andrews
Bio: Frederick Chesneau is an academic researcher from Heidelberg University. The author has contributed to research in topics: Lithium & Electrolyte. The author has an hindex of 21, co-authored 28 publications receiving 2558 citations. Previous affiliations of Frederick Chesneau include University of St Andrews.

Papers
More filters
Journal ArticleDOI
TL;DR: Li-sulfur batteries have high theoretical energy density that can revolutionize electrochemical propulsion capability Consequently, in recent years there has been much work throughout the world related to these systems as mentioned in this paper.
Abstract: The development and commercialization of Li ion batteries during recent decades is one of the great successes of modern electrochemistry The increasing reliability of Li ion batteries makes them natural candidates as power sources for electric vehicles However, their current energy density, which can reach an average of 200 Wh kg−1 on the single cell level, limits the possible driving range of electric cars propelled by Li-ion batteries Thereby, there is a strong driving force to develop power sources technologies beyond Li-ion batteries that will mark breakthroughs in energy density capabilities Li-sulfur batteries have high theoretical energy density that can revolutionize electrochemical propulsion capability Consequently, in recent years there has been much work throughout the world related to these systems The scope of work on this topic justifies frequent publications of review articles that summarize recent extensive work and provide guidelines and direction for focused future work Here, a comprehensive, systematic work related to Li-sulfur battery systems is described, beginning with the Li anode challenges, carbon-encapsulated sulfur cathodes, and various kinds of relevant electrolyte solutions Based on the work described and parallel recent studies by other groups, important and comprehensive guidelines for further research and development efforts in this field are provided

611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the highly stable galvanostatic cycling of Li electrodes in a symmetric Li|electrolyte solution|Li coin-cell configuration at a high rate and high areal capacity using fluoroethylene carbonate (FEC)-based electrolyte solutions.
Abstract: We report the highly stable galvanostatic cycling of lithium metal (Li) electrodes in a symmetrical Li|electrolyte solution|Li coin-cell configuration at a high rate and high areal capacity using fluoroethylene carbonate (FEC)-based electrolyte solutions [1 M LiPF6 in FEC/dimethyl carbonate (DMC)]. The FEC-based electrolyte solution shows cycling behavior that is markedly better than that observed for the cells cycled with an ethylene carbonate (EC)-based electrolyte solution (1 M LiPF6 in EC/DMC). With FEC-based electrolyte solution, Li|Li cells can be cycled at 2 mA cm–2 with an areal capacity of 3.3 mAh cm–2 for more than 1100 cycles, and full Li|LiNi0.6Co0.2Mn0.2O2 (NMC) cells with high areal loading cathode demonstrate stable cycling with the same capacity during 90 cycles. An increase in areal capacity up to 6 mA h cm–2 does not affect the shape of the voltage profile of the symmetric Li|Li cells. The reason for this high performance is the formation of a stable and efficient solid electrolyte inter...

333 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined LiI as an electrolyte and additive in Li oxygen cells with ethereal electrolyte solutions and found that at high concentrations of LiI, the presence of the salt promotes a side reaction that forms LiOH as a major product.
Abstract: Mankind has been in an unending search for efficient sources of energy. The coupling of lithium and oxygen in aprotic solvents would seem to be a most promising direction for electrochemistry. Indeed, if successful, this system could compete with technologies such as the internal combustion engine and provide an energy density that would accommodate the demands of electric vehicles. All this promise has not yet reached fruition because of a plethora of practical barriers and challenges. These include solvent and electrode stability, pronounced overvoltage for oxygen evolution reactions, limited cycle life and rate capability. One of the approaches suggested to facilitate the oxygen evolution reactions and improve rate capability is the use of redox mediators such as iodine for the fast oxidation of lithium peroxide. In this paper we have examined LiI as an electrolyte and additive in Li oxygen cells with ethereal electrolyte solutions. At high concentrations of LiI, the presence of the salt promotes a side reaction that forms LiOH as a major product. In turn, the presence of oxygen facilitates the reduction of I3− to 3I− in these systems. At very low concentrations of LiI, oxygen is reduced to Li2O2. The iodine formed in the anodic reaction serves as a redox mediator for Li2O2 oxidation.

182 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report excellent cycling performance for P2−Na0.6Li0.2Mn0.8O2, an auspicious cathode material for sodium-ion batteries.
Abstract: We report excellent cycling performance for P2–Na0.6Li0.2Mn0.8O2, an auspicious cathode material for sodium-ion batteries. This material, which contains mainly Mn4+, exhibits a long voltage plateau on the first charge, similar to that of high-capacity lithium and manganese-rich metal oxides. Electrochemical measurements, X-ray diffraction, and elemental analysis of the cycled electrodes suggest an activation process that includes the extraction of lithium from the material. The “activated” material delivers a stable, high specific capacity up to ∼190 mAh/g after 100 cycles in the voltage window between 4.6–2.0 V versus Na/Na+. DFT calculations locate the energy states of oxygen atoms near the Fermi level, suggesting the possible contribution of oxide ions to the redox process. The addition of Li to the lattice improves structural stability compared to many previously reported sodiated transition-metal oxide electrode materials, by inhibiting the detrimental structural transformation ubiquitously observed ...

178 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI
TL;DR: A review of post-lithium-ion batteries is presented in this paper with a focus on their operating principles, advantages and the challenges that they face, and the volumetric energy density of each battery is examined using a commercial pouch-cell configuration.
Abstract: Energy density is the main property of rechargeable batteries that has driven the entire technology forward in past decades. Lithium-ion batteries (LIBs) now surpass other, previously competitive battery types (for example, lead–acid and nickel metal hydride) but still require extensive further improvement to, in particular, extend the operation hours of mobile IT devices and the driving mileages of all-electric vehicles. In this Review, we present a critical overview of a wide range of post-LIB materials and systems that could have a pivotal role in meeting such demands. We divide battery systems into two categories: near-term and long-term technologies. To provide a realistic and balanced perspective, we describe the operating principles and remaining issues of each post-LIB technology, and also evaluate these materials under commercial cell configurations. Post-lithium-ion batteries are reviewed with a focus on their operating principles, advantages and the challenges that they face. The volumetric energy density of each battery is examined using a commercial pouch-cell configuration to evaluate its practical significance and identify appropriate research directions.

3,314 citations

Journal ArticleDOI
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

3,009 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in tackling the dissolution of polysulfides, a fundamental problem in Li-S batteries, focusing on both experimental and computational approaches to tailor the chemical interactions between the sulfur host materials and poly sulfides is presented.
Abstract: Amid burgeoning environmental concerns, electrochemical energy storage has rapidly gained momentum. Among the contenders in the ‘beyond lithium’ energy storage arena, the lithium–sulfur (Li–S) battery has emerged as particularly promising, owing to its potential to reversibly store considerable electrical energy at low cost. Whether or not Li–S energy storage will be able to fulfil this potential depends on simultaneously solving many aspects of its underlying conversion chemistry. Here, we review recent developments in tackling the dissolution of polysulfides — a fundamental problem in Li–S batteries — focusing on both experimental and computational approaches to tailor the chemical interactions between the sulfur host materials and polysulfides. We also discuss smart cathode architectures enabled by recent materials engineering, especially for high areal sulfur loading, as well as innovative electrolyte design to control the solubility of polysulfides. Key factors that allow long-life and high-loading Li–S batteries are summarized. Li–S batteries are a low-cost and high-energy storage system but their full potential is yet to be realized. This Review surveys recent advances in understanding polysulfide chemistry at the positive electrode and the electrolyte and discusses approaches towards long-life and high-loading batteries.

1,570 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the recent progress in high-sulfur-loading Li-S batteries enabled by hierarchical design principles at multiscale, particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator.
Abstract: Owing to high specific energy, low cost, and environmental friendliness, lithium–sulfur (Li–S) batteries hold great promise to meet the increasing demand for advanced energy storage beyond portable electronics, and to mitigate environmental problems. However, the application of Li–S batteries is challenged by several obstacles, including their short life and low sulfur utilization, which become more serious when sulfur loading is increased to the practically accepted level above 3–5 mg cm−2. More and more efforts have been made recently to overcome the barriers toward commercially viable Li–S batteries with a high sulfur loading. This review highlights the recent progress in high-sulfur-loading Li–S batteries enabled by hierarchical design principles at multiscale. Particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator are under specific concerns. Hierarchy in the multiscale design is proposed to guide the future development of high-sulfur-loading Li–S batteries.

1,364 citations