scispace - formally typeset
Search or ask a question
Author

Frédérick Massin

Bio: Frédérick Massin is an academic researcher from Swiss Seismological Service. The author has contributed to research in topics: Caldera & Volcano. The author has an hindex of 9, co-authored 24 publications receiving 586 citations. Previous affiliations of Frédérick Massin include Institut de Physique du Globe de Paris & Centre national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
Thomas Lecocq1, Stephen Hicks2, Koen Van Noten1, Kasper van Wijk3, Paula Koelemeijer4, Raphael S. M. De Plaen5, Frédérick Massin6, Gregor Hillers7, Robert E. Anthony8, Maria-Theresia Apoloner9, Mario Arroyo-Solórzano10, Jelle Assink11, Pınar Büyükakpınar12, Pınar Büyükakpınar13, Andrea Cannata14, Andrea Cannata15, Flavio Cannavò14, Sebastián Carrasco16, Corentin Caudron17, Esteban J. Chaves, Dave Cornwell18, David Craig19, Olivier F. C. den Ouden11, Olivier F. C. den Ouden20, Jordi Diaz21, Stefanie Donner22, Christos Evangelidis, Läslo Evers20, Läslo Evers11, Benoit Fauville, Gonzalo A. Fernandez, Dimitrios Giannopoulos23, Steven J. Gibbons24, Társilo Girona25, Bogdan Grecu, Marc Grunberg26, György Hetényi27, Anna Horleston28, Adolfo Inza, Jessica C. E. Irving29, Jessica C. E. Irving28, Mohammadreza Jamalreyhani30, Mohammadreza Jamalreyhani12, Alan L. Kafka31, Mathijs Koymans11, Mathijs Koymans20, C. R. Labedz32, Eric Larose17, Nathaniel J. Lindsey33, Mika McKinnon34, Mika McKinnon35, T. Megies36, Meghan S. Miller37, William G. Minarik38, Louis Moresi37, Victor H. Márquez-Ramírez5, Martin Möllhoff19, Ian M. Nesbitt39, Shankho Niyogi40, Javier Ojeda41, Adrien Oth, Simon Richard Proud42, Jay J. Pulli43, Jay J. Pulli31, Lise Retailleau44, Annukka E. Rintamäki7, Claudio Satriano44, Martha K. Savage45, Shahar Shani-Kadmiel20, Reinoud Sleeman11, Efthimios Sokos46, Klaus Stammler22, Alexander E. Stott2, Shiba Subedi27, Mathilde B. Sørensen47, Taka'aki Taira48, Mar Tapia49, Fatih Turhan13, Ben A. van der Pluijm50, Mark Vanstone, Jérôme Vergne26, Tommi Vuorinen7, Tristram Warren42, Joachim Wassermann36, Han Xiao51 
Royal Observatory of Belgium1, Imperial College London2, University of Auckland3, Royal Holloway, University of London4, National Autonomous University of Mexico5, Swiss Seismological Service6, University of Helsinki7, United States Geological Survey8, Central Institution for Meteorology and Geodynamics9, University of Costa Rica10, Royal Netherlands Meteorological Institute11, University of Potsdam12, Kandilli Observatory and Earthquake Research Institute13, National Institute of Geophysics and Volcanology14, University of Catania15, University of Cologne16, University of Savoy17, King's College, Aberdeen18, Dublin Institute for Advanced Studies19, Delft University of Technology20, Spanish National Research Council21, Institute for Geosciences and Natural Resources22, Mediterranean University23, Norwegian Geotechnical Institute24, University of Alaska Fairbanks25, University of Strasbourg26, University of Lausanne27, University of Bristol28, Princeton University29, University of Tehran30, Boston College31, California Institute of Technology32, Stanford University33, University of British Columbia34, Search for extraterrestrial intelligence35, Ludwig Maximilian University of Munich36, Australian National University37, McGill University38, University of Maine39, University of California, Riverside40, University of Chile41, University of Oxford42, BBN Technologies43, Institut de Physique du Globe de Paris44, Victoria University of Wellington45, University of Patras46, University of Bergen47, University of California, Berkeley48, Institut d'Estudis Catalans49, University of Michigan50, University of California, Santa Barbara51
11 Sep 2020-Science
TL;DR: The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record and suggests that seismology provides an absolute, real-time estimate of human activities.
Abstract: Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.

202 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a chronology of two related major events in the recent activity of Piton de la Fournaise seen by the scientific networks of the volcanological observatory (OVPF/IPGP) and field observations, which allowed to back up the scenario of the caldera formation and quantify these two exceptional episodes.

176 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the detailed spatial-temporal evolution of the 2010 Madison Plateau swarm, which occurred near the northwest boundary of the Yellowstone caldera, and integrated procedures for seismic waveform-based earthquake detection with precise double-difference relative relocation.
Abstract: [1] Over the past several decades, the Yellowstone caldera has experienced frequent earthquake swarms and repeated cycles of uplift and subsidence, reflecting dynamic volcanic and tectonic processes. Here we examine the detailed spatial-temporal evolution of the 2010 Madison Plateau swarm, which occurred near the northwest boundary of the Yellowstone caldera. To fully explore the evolution of the swarm, we integrated procedures for seismic waveform-based earthquake detection with precise double-difference relative relocation. Using cross correlation of continuous seismic data and waveform templates constructed from cataloged events, we detected and precisely located 8710 earthquakes during the 3 week swarm, nearly 4 times the number of events included in the standard catalog. This high-resolution analysis reveals distinct migration of earthquake activity over the course of the swarm. The swarm initiated abruptly on 17 January 2010 at about 10 km depth and expanded dramatically outward (both shallower and deeper) over time, primarily along a NNW striking, ~55° ENE dipping structure. To explain these characteristics, we hypothesize that the swarm was triggered by the rupture of a zone of confined high-pressure aqueous fluids into a preexisting crustal fault system, prompting release of accumulated stress. The high-pressure fluid injection may have been accommodated by hybrid shear and dilatational failure, as is commonly observed in exhumed hydrothermally affected fault zones. This process has likely occurred repeatedly in Yellowstone as aqueous fluids exsolved from magma migrate into the brittle crust, and it may be a key element in the observed cycles of caldera uplift and subsidence.

144 citations

Journal ArticleDOI
TL;DR: In this article, the authors use cross-correlation of seismic waveforms and clustering to improve the earthquake locations and determine the best-constrained focal mechanisms (with an average of 78 P phase polarities).

59 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the collapse dynamics in basaltic volcano and the associated edifice deformation through the evolution of the time interval between two successive collapse increments, the amount of vertical displacement during each collapse increment, and the magma outflow rate during the whole collapse caldera process.
Abstract: [1] The incremental caldera collapses of Fernandina (1968), Miyakejima (2000), and Piton de la Fournaise (2007) are analyzed in order to understand the collapse dynamics in basaltic setting and the associated edifice deformation. For each caldera, the collapse dynamics is assessed through the evolution of the (1) time interval T between two successive collapse increments, (2) amount of vertical displacement during each collapse increment, and (3) magma outflow rate during the whole collapse caldera process. We show from the evolution of T that Piton de la Fournaise and Fernandina were characterized by a similar collapse dynamics, despite large differences in the caldera geometry and the duration of the whole collapse caldera process. This evolution significantly differs from that of Miyakejima where T strongly fluctuated throughout the whole collapse process. Quantification of the piston vertical displacements enables us to determine the magma outflow rates between each collapse increment. Displacement data (tiltmeter and/or GPS) for Piton de la Fournaise and Miyakejima are used to constrain the edifice overall deformation and the edifice deformation rates. These data reveal that both volcanoes experienced edifice inflation once the piston collapsed into the magma chamber. Such a deformation, which lasts during the first collapse increments only, is interpreted as the result of larger volume of piston intruded in the magma chamber than magma withdrawn before each collapse increment. Once the effect of the collapsing rock column vanishes, edifice deflates. We also determine for each caldera the critical amount of magma evacuated before collapse initiation and compare it to analog models. The significant differences between models and nature are explained by the occurrence of preexisting weak zones in nature, i.e., the ring faults, that are not taken into account in analog models. Finally, we show that T at Piton de la Fournaise and Fernandina was equally controlled by the frictional resistance along the ring faults and the magma outflow rate. In addition to these two parameters, the collapse dynamics of Miyakejima was also influenced by variations of the magma bulk modulus, which changed after the influx of deep gas-rich magma into the collapse-related magma chamber. Altogether, our results show that the dynamics of caldera collapse in basaltic volcanoes proceeds in two phases: Phase 1, starting with the first collapse, is characterized by the largest collapse amplitude, an incremental edifice inflation, and a step-by-step increase of the rate of magma outflow. Phase 2 shows a rapid decrease of the magma discharge rate to a low level concomitant with the continuous edifice deflation. If deep magma is injected into the magma chamber, as at Miyakejima, an additional phase occurs (phase 3).

58 citations


Cited by
More filters
Journal ArticleDOI
08 Jan 2015-Nature
TL;DR: Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.
Abstract: Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long1. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens2, 3, 4, or magma flowing vertically into dykes from an underlying source5, 6, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Barðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Barðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Barðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

433 citations

Journal ArticleDOI
TL;DR: FAST detected most (21 of 24) cataloged earthquakes and 68 uncataloged earthquakes in 1 week of continuous data from a station located near the Calaveras Fault in central California, achieving detection performance comparable to that of autocorrelation, with some additional false detections.
Abstract: Seismology is experiencing rapid growth in the quantity of data, which has outpaced the development of processing algorithms. Earthquake detection—identification of seismic events in continuous data—is a fundamental operation for observational seismology. We developed an efficient method to detect earthquakes using waveform similarity that overcomes the disadvantages of existing detection methods. Our method, called Fingerprint And Similarity Thresholding (FAST), can analyze a week of continuous seismic waveform data in less than 2 hours, or 140 times faster than autocorrelation. FAST adapts a data mining algorithm, originally designed to identify similar audio clips within large databases; it first creates compact “fingerprints” of waveforms by extracting key discriminative features, then groups similar fingerprints together within a database to facilitate fast, scalable search for similar fingerprint pairs, and finally generates a list of earthquake detections. FAST detected most (21 of 24) cataloged earthquakes and 68 uncataloged earthquakes in 1 week of continuous data from a station located near the Calaveras Fault in central California, achieving detection performance comparable to that of autocorrelation, with some additional false detections. FAST is expected to realize its full potential when applied to extremely long duration data sets over a distributed network of seismic stations. The widespread application of FAST has the potential to aid in the discovery of unexpected seismic signals, improve seismic monitoring, and promote a greater understanding of a variety of earthquake processes.

261 citations

Journal ArticleDOI
15 Jul 2016-Science
TL;DR: It is concluded that interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual near-exponential decline of both the collapse rate and the intensity of the 180-day-long eruption of the Bárdarbunga volcano.
Abstract: INTRODUCTION The Bardarbunga caldera volcano in central Iceland collapsed from August 2014 to February 2015 during the largest eruption in Europe since 1784. An ice-filled subsidence bowl, 110 square kilometers (km 2 ) in area and up to 65 meters (m) deep developed, while magma drained laterally for 48 km along a subterranean path and erupted as a major lava flow northeast of the volcano. Our data provide unprecedented insight into the workings of a collapsing caldera. RATIONALE Collapses of caldera volcanoes are, fortunately, not very frequent, because they are often associated with very large volcanic eruptions. On the other hand, the rarity of caldera collapses limits insight into this major geological hazard. Since the formation of Katmai caldera in 1912, during the 20th century’s largest eruption, only five caldera collapses are known to have occurred before that at Bardarbunga. We used aircraft-based altimetry, satellite photogrammetry, radar interferometry, ground-based GPS, evolution of seismicity, radio-echo soundings of ice thickness, ice flow modeling, and geobarometry to describe and analyze the evolving subsidence geometry, its underlying cause, the amount of magma erupted, the geometry of the subsurface caldera ring faults, and the moment tensor solutions of the collapse-related earthquakes. RESULTS After initial lateral withdrawal of magma for some days though a magma-filled fracture propagating through Earth’s upper crust, preexisting ring faults under the volcano were reactivated over the period 20 to 24 August, marking the onset of collapse. On 31 August, the eruption started, and it terminated when the collapse stopped, having produced 1.5 km of basaltic lava. The subsidence of the caldera declined with time in a near-exponential manner, in phase with the lava flow rate. The volume of the subsidence bowl was about 1.8 km 3 . Using radio-echo soundings, we find that the subglacial bedrock surface after the collapse is down-sagged, with no indications of steep fault escarpments. Using geobarometry, we determined the depth of magma reservoir to be ~12 km, and modeling of geodetic observations gives a similar result. High-precision earthquake locations and moment tensor analysis of the remarkable magnitude M 5 earthquake series are consistent with steeply dipping ring faults. Statistical analysis of seismicity reveals communication over tens of kilometers between the caldera and the dike. CONCLUSION We conclude that interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual near-exponential decline of both the collapse rate and the intensity of the 180-day-long eruption. By combining our various data sets, we show that the onset of collapse was caused by outflow of magma from underneath the caldera when 12 to 20% of the total magma intruded and erupted had flowed from the magma reservoir. However, the continued subsidence was driven by a feedback between the pressure of the piston-like block overlying the reservoir and the 48-km-long magma outflow path. Our data provide better constraints on caldera mechanisms than previously available, demonstrating what caused the onset and how both the roof overburden and the flow path properties regulate the collapse.

232 citations

Journal ArticleDOI
Thomas Lecocq1, Stephen Hicks2, Koen Van Noten1, Kasper van Wijk3, Paula Koelemeijer4, Raphael S. M. De Plaen5, Frédérick Massin6, Gregor Hillers7, Robert E. Anthony8, Maria-Theresia Apoloner9, Mario Arroyo-Solórzano10, Jelle Assink11, Pınar Büyükakpınar12, Pınar Büyükakpınar13, Andrea Cannata14, Andrea Cannata15, Flavio Cannavò14, Sebastián Carrasco16, Corentin Caudron17, Esteban J. Chaves, Dave Cornwell18, David Craig19, Olivier F. C. den Ouden11, Olivier F. C. den Ouden20, Jordi Diaz21, Stefanie Donner22, Christos Evangelidis, Läslo Evers20, Läslo Evers11, Benoit Fauville, Gonzalo A. Fernandez, Dimitrios Giannopoulos23, Steven J. Gibbons24, Társilo Girona25, Bogdan Grecu, Marc Grunberg26, György Hetényi27, Anna Horleston28, Adolfo Inza, Jessica C. E. Irving29, Jessica C. E. Irving28, Mohammadreza Jamalreyhani30, Mohammadreza Jamalreyhani12, Alan L. Kafka31, Mathijs Koymans20, Mathijs Koymans11, C. R. Labedz32, Eric Larose17, Nathaniel J. Lindsey33, Mika McKinnon34, Mika McKinnon35, T. Megies36, Meghan S. Miller37, William G. Minarik38, Louis Moresi37, Victor H. Márquez-Ramírez5, Martin Möllhoff19, Ian M. Nesbitt39, Shankho Niyogi40, Javier Ojeda41, Adrien Oth, Simon Richard Proud42, Jay J. Pulli43, Jay J. Pulli31, Lise Retailleau44, Annukka E. Rintamäki7, Claudio Satriano44, Martha K. Savage45, Shahar Shani-Kadmiel20, Reinoud Sleeman11, Efthimios Sokos46, Klaus Stammler22, Alexander E. Stott2, Shiba Subedi27, Mathilde B. Sørensen47, Taka'aki Taira48, Mar Tapia49, Fatih Turhan13, Ben A. van der Pluijm50, Mark Vanstone, Jérôme Vergne26, Tommi Vuorinen7, Tristram Warren42, Joachim Wassermann36, Han Xiao51 
Royal Observatory of Belgium1, Imperial College London2, University of Auckland3, Royal Holloway, University of London4, National Autonomous University of Mexico5, Swiss Seismological Service6, University of Helsinki7, United States Geological Survey8, Central Institution for Meteorology and Geodynamics9, University of Costa Rica10, Royal Netherlands Meteorological Institute11, University of Potsdam12, Kandilli Observatory and Earthquake Research Institute13, National Institute of Geophysics and Volcanology14, University of Catania15, University of Cologne16, University of Savoy17, King's College, Aberdeen18, Dublin Institute for Advanced Studies19, Delft University of Technology20, Spanish National Research Council21, Institute for Geosciences and Natural Resources22, Mediterranean University23, Norwegian Geotechnical Institute24, University of Alaska Fairbanks25, University of Strasbourg26, University of Lausanne27, University of Bristol28, Princeton University29, University of Tehran30, Boston College31, California Institute of Technology32, Stanford University33, University of British Columbia34, Search for extraterrestrial intelligence35, Ludwig Maximilian University of Munich36, Australian National University37, McGill University38, University of Maine39, University of California, Riverside40, University of Chile41, University of Oxford42, BBN Technologies43, Institut de Physique du Globe de Paris44, Victoria University of Wellington45, University of Patras46, University of Bergen47, University of California, Berkeley48, Institut d'Estudis Catalans49, University of Michigan50, University of California, Santa Barbara51
11 Sep 2020-Science
TL;DR: The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record and suggests that seismology provides an absolute, real-time estimate of human activities.
Abstract: Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.

202 citations

Journal ArticleDOI
TL;DR: In this article, a detailed analysis of geophysical and geochemical data associated with the last 35 years of activity at Piton de La Fournaise volcano has been presented, showing evidence of major changes in the shallow plumbing system in 2000.

201 citations