scispace - formally typeset
Search or ask a question
Author

Frederik Kratzert

Bio: Frederik Kratzert is an academic researcher from Johannes Kepler University of Linz. The author has contributed to research in topics: Computer science & Streamflow. The author has an hindex of 11, co-authored 37 publications receiving 682 citations. Previous affiliations of Frederik Kratzert include Google & University of Natural Resources and Life Sciences, Vienna.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a novel data-driven approach, using the Long Short-Term Memory (LSTM) network, a special type of recurrent neural network, was proposed for modeling storage effects in e.g. catchments with snow influence.
Abstract: . Rainfall–runoff modelling is one of the key challenges in the field of hydrology. Various approaches exist, ranging from physically based over conceptual to fully data-driven models. In this paper, we propose a novel data-driven approach, using the Long Short-Term Memory (LSTM) network, a special type of recurrent neural network. The advantage of the LSTM is its ability to learn long-term dependencies between the provided input and output of the network, which are essential for modelling storage effects in e.g. catchments with snow influence. We use 241 catchments of the freely available CAMELS data set to test our approach and also compare the results to the well-known Sacramento Soil Moisture Accounting Model (SAC-SMA) coupled with the Snow-17 snow routine. We also show the potential of the LSTM as a regional hydrological model in which one model predicts the discharge for a variety of catchments. In our last experiment, we show the possibility to transfer process understanding, learned at regional scale, to individual catchments and thereby increasing model performance when compared to a LSTM trained only on the data of single catchments. Using this approach, we were able to achieve better model performance as the SAC-SMA + Snow-17, which underlines the potential of the LSTM for hydrological modelling applications.

569 citations

Journal ArticleDOI
TL;DR: In this paper, an out-of-sample Long Short-Term Memory (LSTM) network was used for predicting in ungauged basins, where the model was trained and tested on the CAMELS basins (approximately 30 years of daily rainfall/runoff data from 531 catchments in the US of sizes ranging from 4 km to 2,000 km).
Abstract: Long Short-Term Memory (LSTM) networks offer unprecedented accuracy for prediction in ungauged basins. We trained and tested an LSTM on the CAMELS basins (approximately 30 years of daily rainfall/runoff data from 531 catchments in the US of sizes ranging from 4 km² to 2,000 km²) using k-fold validation, so that predictions were made in basins that supplied no training data. This effectively `ungauged model was benchmarked over a 15-year validation period against the Sacramento Soil Moisture Accounting (SAC-SMA) model and also against the NOAA National Water Model reanalysis. SAC-SMA was calibrated separately for each basin using 15 years of daily data (i.e., this is a `gauged model). The out-of-sample LSTM had higher median Nash-Sutcliffe Efficiencies across the 531 basins (0.69) than either the calibrated SAC-SMA (0.64) or the National Water Model (0.58). We outline several future research directions that would help develop this technology into a comprehensive regional hydrology model.

263 citations

Journal ArticleDOI
TL;DR: This paper proposes an adaption to the standard LSTM architecture, which it is called an Entity-Aware-L STM (EA-LSTM), that allows for learning catchment similarities as a feature layer in a deep learning model and shows that these learned caughtment similarities correspond well to what the authors would expect from prior hydrological understanding.
Abstract: . Regional rainfall–runoff modeling is an old but still mostly outstanding problem in the hydrological sciences. The problem currently is that traditional hydrological models degrade significantly in performance when calibrated for multiple basins together instead of for a single basin alone. In this paper, we propose a novel, data-driven approach using Long Short-Term Memory networks (LSTMs) and demonstrate that under a “big data” paradigm, this is not necessarily the case. By training a single LSTM model on 531 basins from the CAMELS dataset using meteorological time series data and static catchment attributes, we were able to significantly improve performance compared to a set of several different hydrological benchmark models. Our proposed approach not only significantly outperforms hydrological models that were calibrated regionally, but also achieves better performance than hydrological models that were calibrated for each basin individually. Furthermore, we propose an adaption to the standard LSTM architecture, which we call an Entity-Aware-LSTM (EA-LSTM), that allows for learning catchment similarities as a feature layer in a deep learning model. We show that these learned catchment similarities correspond well to what we would expect from prior hydrological understanding.

258 citations

Journal ArticleDOI
TL;DR: This commentary is a call to action for the hydrology community to focus on developing a quantitative understanding of where and when hydrological process understanding is valuable in a modeling discipline increasingly dominated by machine learning.
Abstract: We suggest that there is a potential danger to the hydrological sciences community in not recognizing how transformative machine learning will be for the future of hydrological modeling. Given the recent success of machine learning applied to modeling problems, it is unclear what the role of hydrological theory might be in the future. We suggest that a central challenge in hydrology right now should be to clearly delineate where and when hydrological theory adds value to prediction systems. Lessons learned from the history of hydrological modeling motivate several clear next steps toward integrating machine learning into hydrological modeling workflows.

174 citations

Journal ArticleDOI
TL;DR: This study proposes two Multi-Timescale LSTM (MTS-LSTM) architectures that jointly predict multiple timescales within one model, as they process long-past inputs at a single temporal resolution and branch out into each individual timescale for more recent input steps.
Abstract: . Long Short-Term Memory (LSTM) networks have been applied to daily discharge prediction with remarkable success. Many practical applications, however, require predictions at more granular timescales. For instance, accurate prediction of short but extreme flood peaks can make a lifesaving difference, yet such peaks may escape the coarse temporal resolution of daily predictions. Naively training an LSTM on hourly data, however, entails very long input sequences that make learning difficult and computationally expensive. In this study, we propose two multi-timescale LSTM (MTS-LSTM) architectures that jointly predict multiple timescales within one model, as they process long-past inputs at a different temporal resolution than more recent inputs. In a benchmark on 516 basins across the continental United States, these models achieved significantly higher Nash–Sutcliffe efficiency (NSE) values than the US National Water Model. Compared to naive prediction with distinct LSTMs per timescale, the multi-timescale architectures are computationally more efficient with no loss in accuracy. Beyond prediction quality, the multi-timescale LSTM can process different input variables at different timescales, which is especially relevant to operational applications where the lead time of meteorological forcings depends on their temporal resolution.

95 citations


Cited by
More filters
Journal ArticleDOI
05 Jul 2019-Water
TL;DR: In this paper, a Long Short-Term Memory (LSTM) neural network model was used for flood forecasting, where the daily discharge and rainfall were used as input data, and characteristics of the data sets which may influence the model performance were also of interest.
Abstract: Flood forecasting is an essential requirement in integrated water resource management. This paper suggests a Long Short-Term Memory (LSTM) neural network model for flood forecasting, where the daily discharge and rainfall were used as input data. Moreover, characteristics of the data sets which may influence the model performance were also of interest. As a result, the Da River basin in Vietnam was chosen and two different combinations of input data sets from before 1985 (when the Hoa Binh dam was built) were used for one-day, two-day, and three-day flowrate forecasting ahead at Hoa Binh Station. The predictive ability of the model is quite impressive: The Nash–Sutcliffe efficiency (NSE) reached 99%, 95%, and 87% corresponding to three forecasting cases, respectively. The findings of this study suggest a viable option for flood forecasting on the Da River in Vietnam, where the river basin stretches between many countries and downstream flows (Vietnam) may fluctuate suddenly due to flood discharge from upstream hydroelectric reservoirs.

412 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a timely overview of explainable AI, with a focus on 'post-hoc' explanations, explain its theoretical foundations, and put interpretability algorithms to a test both from a theory and comparative evaluation perspective using extensive simulations.
Abstract: With the broader and highly successful usage of machine learning in industry and the sciences, there has been a growing demand for Explainable AI. Interpretability and explanation methods for gaining a better understanding about the problem solving abilities and strategies of nonlinear Machine Learning, in particular, deep neural networks, are therefore receiving increased attention. In this work we aim to (1) provide a timely overview of this active emerging field, with a focus on 'post-hoc' explanations, and explain its theoretical foundations, (2) put interpretability algorithms to a test both from a theory and comparative evaluation perspective using extensive simulations, (3) outline best practice aspects i.e. how to best include interpretation methods into the standard usage of machine learning and (4) demonstrate successful usage of explainable AI in a representative selection of application scenarios. Finally, we discuss challenges and possible future directions of this exciting foundational field of machine learning.

385 citations

Journal ArticleDOI
04 Mar 2021
TL;DR: In this paper, the authors provide a timely overview of post hoc explanations and explain its theoretical foundations, and put interpretability algorithms to a test both from a theory and comparative evaluation perspective using extensive simulations, and demonstrate successful usage of XAI in a representative selection of application scenarios.
Abstract: With the broader and highly successful usage of machine learning (ML) in industry and the sciences, there has been a growing demand for explainable artificial intelligence (XAI). Interpretability and explanation methods for gaining a better understanding of the problem-solving abilities and strategies of nonlinear ML, in particular, deep neural networks, are, therefore, receiving increased attention. In this work, we aim to: 1) provide a timely overview of this active emerging field, with a focus on “ post hoc ” explanations, and explain its theoretical foundations; 2) put interpretability algorithms to a test both from a theory and comparative evaluation perspective using extensive simulations; 3) outline best practice aspects, i.e., how to best include interpretation methods into the standard usage of ML; and 4) demonstrate successful usage of XAI in a representative selection of application scenarios. Finally, we discuss challenges and possible future directions of this exciting foundational field of ML.

321 citations

01 Dec 2017
TL;DR: In this paper, a comprehensive evaluation of 22 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000-2016 was conducted, using daily P gauge observations from 76,086 gauges worldwide.
Abstract: Abstract. We undertook a comprehensive evaluation of 22 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the HBV conceptual model against streamflow records for each of 9053 small to medium-sized (

293 citations

Journal ArticleDOI
TL;DR: In this paper, an out-of-sample Long Short-Term Memory (LSTM) network was used for predicting in ungauged basins, where the model was trained and tested on the CAMELS basins (approximately 30 years of daily rainfall/runoff data from 531 catchments in the US of sizes ranging from 4 km to 2,000 km).
Abstract: Long Short-Term Memory (LSTM) networks offer unprecedented accuracy for prediction in ungauged basins. We trained and tested an LSTM on the CAMELS basins (approximately 30 years of daily rainfall/runoff data from 531 catchments in the US of sizes ranging from 4 km² to 2,000 km²) using k-fold validation, so that predictions were made in basins that supplied no training data. This effectively `ungauged model was benchmarked over a 15-year validation period against the Sacramento Soil Moisture Accounting (SAC-SMA) model and also against the NOAA National Water Model reanalysis. SAC-SMA was calibrated separately for each basin using 15 years of daily data (i.e., this is a `gauged model). The out-of-sample LSTM had higher median Nash-Sutcliffe Efficiencies across the 531 basins (0.69) than either the calibrated SAC-SMA (0.64) or the National Water Model (0.58). We outline several future research directions that would help develop this technology into a comprehensive regional hydrology model.

263 citations