scispace - formally typeset
Search or ask a question
Author

Fredrik A. Dahl

Bio: Fredrik A. Dahl is an academic researcher from Akershus University Hospital. The author has contributed to research in topics: Population & Oligonucleotide. The author has an hindex of 31, co-authored 109 publications receiving 5620 citations. Previous affiliations of Fredrik A. Dahl include University of California, San Diego & Stanford University.


Papers
More filters
Journal ArticleDOI
01 Jan 2010-Science
TL;DR: A genome sequencing platform that achieves efficient imaging and low reagent consumption with combinatorial probe anchor ligation chemistry to independently assay each base from patterned nanoarrays of self-assembling DNA nanoballs is described.
Abstract: Genome sequencing of large numbers of individuals promises to advance the understanding, treatment, and prevention of human diseases, among other applications. We describe a genome sequencing platform that achieves efficient imaging and low reagent consumption with combinatorial probe anchor ligation chemistry to independently assay each base from patterned nanoarrays of self-assembling DNA nanoballs. We sequenced three human genomes with this platform, generating an average of 45- to 87-fold coverage per genome and identifying 3.2 to 4.5 million sequence variants per genome. Validation of one genome data set demonstrates a sequence accuracy of about 1 false variant per 100 kilobases. The high accuracy, affordable cost of $4400 for sequencing consumables, and scalability of this platform enable complete human genome sequencing for the detection of rare variants in large-scale genetic studies.

1,343 citations

Journal ArticleDOI
TL;DR: A high BMI was significantly associated with knee OA and hand OA, but not with hip OA; there was no statistically significant interaction effect between BMI and gender, age or any of the other confounding variables.
Abstract: Obesity is one of the most important risk factors for osteoarthritis (OA) in knee(s). However, the relationship between obesity and OA in hand(s) and hip(s) remains controversial and needs further investigation. The purpose of this study was to investigate the impact of obesity on incident osteoarthritis (OA) in hip, knee, and hand in a general population followed in 10 years. A total of 1854 people aged 24–76 years in 1994 participated in a Norwegian study on musculoskeletal pain in both 1994 and 2004. Participants with OA or rheumatoid arthritis in 1994 and those above 74 years in 1994 were excluded, leaving n = 1675 for the analyses. The main outcome measure was OA diagnosis at follow-up based on self-report. Obesity was defined by a body mass index (BMI) of 30 and above. At 10-years follow-up the incidence rates were 5.8% (CI 4.3–7.3) for hip OA, 7.3% (CI 5.7–9.0) for knee OA, and 5.6% (CI 4.2–7.1) for hand OA. When adjusting for age, gender, work status and leisure time activities, a high BMI (> 30) was significantly associated with knee OA (OR 2.81; 95%CI 1.32–5.96), and a dose-response relationship was found for this association. Obesity was also significantly associated with hand OA (OR 2.59; 1.08–6.19), but not with hip OA (OR 1.11; 0.41–2.97). There was no statistically significant interaction effect between BMI and gender, age or any of the other confounding variables. A high BMI was significantly associated with knee OA and hand OA, but not with hip OA.

547 citations

Journal ArticleDOI
TL;DR: It is shown that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify ∼10,000 human exons in a single multiplex reaction, and it is anticipated that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing ofhuman exons at a fraction of the cost of whole-genome resequenced.
Abstract: A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

509 citations

Journal ArticleDOI
12 Jul 2012-Nature
TL;DR: A low-cost DNA sequencing and haplotyping process, long fragment read (LFR) technology, which is similar to sequencing long single DNA molecules without cloning or separation of metaphase chromosomes is described.
Abstract: Recent advances in whole-genome sequencing have brought the vision of personal genomics and genomic medicine closer to reality. However, current methods lack clinical accuracy and the ability to describe the context (haplotypes) in which genome variants co-occur in a cost-effective manner. Here we describe a low-cost DNA sequencing and haplotyping process, long fragment read (LFR) technology, which is similar to sequencing long single DNA molecules without cloning or separation of metaphase chromosomes. In this study, ten LFR libraries were made using only ∼100 picograms of human DNA per sample. Up to 97% of the heterozygous single nucleotide variants were assembled into long haplotype contigs. Removal of false positive single nucleotide variants not phased by multiple LFR haplotypes resulted in a final genome error rate of 1 in 10 megabases. Cost-effective and accurate genome sequencing and haplotyping from 10–20 human cells, as demonstrated here, will enable comprehensive genetic studies and diverse clinical applications. A new DNA analysis method termed long fragment read technology is described, and the approach is used to determine parental haplotypes and to sequence human genomes cost-effectively and accurately from only 10 to 20 cells. Many of the hoped-for advances in the field of personalized medicine are dependent on the development of low-cost genome-sequencing technology that combines clinical accuracy with the ability to describe the context (the genetic haplotype) in which variants occur on an individual chromosome. The technique described here, termed long-fragment read technology, is similar to that used to sequence long single DNA molecules, but without DNA cloning or chromosome separation. The authors demonstrate the potential of this approach by generating seven accurate human genome sequences, as well as haplotype data, from samples containing just 10–20 cells. This advance shows that it should be possible to achieve clinical quality and scale in personal genome sequencing of microbiopsies and circulating cancer cells.

320 citations

Journal ArticleDOI
TL;DR: A tightly controlled process for strand-specific amplification of circularized DNA molecules that is suitable for parallel amplification of large numbers of DNA circles, because the few cycles and the robust reaction mechanism preserves the proportion of amplified molecules.
Abstract: We present a tightly controlled process for strand-specific amplification of circularized DNA molecules. Tandem repeated complements of DNA circles are generated by rolling-circle replication, and converted to monomer circles of opposite polarity to that of the starting material. These circles are then subjected to one more round of rolling-circle replication and circularization, and the process can be further repeated. The method can be directed to produce single-stranded circular or linear monomers, or linear concatemers of the desired polarity. The reaction is not product inhibited, and can yield ≈100-fold higher concentrations of monomer products than PCR. Each generation of the amplification process proceeds in a linear fashion, ensuring precise quantification. The procedure is suitable for parallel amplification of large numbers of DNA circles, because the few cycles and the robust reaction mechanism preserves the proportion of amplified molecules. We demonstrate the utility of the method for multiplexed genotyping of polymorphic loci and for quantitative DNA analysis.

243 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
28 Jan 2016-Nature
TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Abstract: The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of stateof-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

14,377 citations

Journal ArticleDOI
TL;DR: A unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs is presented.
Abstract: Recent advances in sequencing technology make it possible to comprehensively catalogue genetic variation in population samples, creating a foundation for understanding human disease, ancestry and evolution. The amounts of raw data produced are prodigious and many computational steps are required to translate this output into high-quality variant calls. We present a unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs. Our process includes (1) initial read mapping; (2) local realignment around indels; (3) base quality score recalibration; (4) SNP discovery and genotyping to find all potential variants; and (5) machine learning to separate true segregating variation from machine artifacts common to next-generation sequencing technologies. We discuss the application of these tools, instantiated in the Genome Analysis Toolkit (GATK), to deep whole-genome, whole-exome capture, and multi-sample low-pass (~4×) 1000 Genomes Project datasets.

10,056 citations

Journal ArticleDOI
01 Nov 2012-Nature
TL;DR: It is shown that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites.
Abstract: By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations.

7,710 citations