scispace - formally typeset
Author

Fredrik Ronquist

Other affiliations: Uppsala University, Florida State University
Bio: Fredrik Ronquist is an academic researcher from Swedish Museum of Natural History. The author has contributed to research in topic(s): Monophyly & Bayesian inference. The author has an hindex of 54, co-authored 122 publication(s) receiving 76188 citation(s). Previous affiliations of Fredrik Ronquist include Uppsala University & Florida State University.
Papers
More filters

Journal ArticleDOI
12 Aug 2003-Bioinformatics
TL;DR: MrBayes 3 performs Bayesian phylogenetic analysis combining information from different data partitions or subsets evolving under different stochastic evolutionary models to analyze heterogeneous data sets and explore a wide variety of structured models mixing partition-unique and shared parameters.
Abstract: Summary: MrBayes 3 performs Bayesian phylogenetic analysis combining information from different data partitions or subsets evolving under different stochastic evolutionary models. This allows the user to analyze heterogeneous data sets consisting of different data types—e.g. morphological, nucleotide, and protein— and to explore a wide variety of structured models mixing partition-unique and shared parameters. The program employs MPI to parallelize Metropolis coupling on Macintosh or UNIX clusters.

24,102 citations


Journal ArticleDOI
01 Aug 2001-Bioinformatics
TL;DR: The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo, and an executable is available at http://brahms.rochester.edu/software.html.
Abstract: Summary: The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. Availability: MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.

19,476 citations


Journal ArticleDOI
01 May 2012-Systematic Biology
TL;DR: The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly, and provides more output options than previously, including samples of ancestral states, site rates, site dN/dS rations, branch rates, and node dates.
Abstract: Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.

14,723 citations


Journal ArticleDOI
14 Dec 2001-Science
TL;DR: Bayesian inference of phylogeny brings a new perspective to a number of outstanding issues in evolutionary biology, including the analysis of large phylogenetic trees and complex evolutionary models and the detection of the footprint of natural selection in DNA sequences.
Abstract: As a discipline, phylogenetics is becoming transformed by a flood of molecular data. These data allow broad questions to be asked about the history of life, but also present difficult statistical and computational problems. Bayesian inference of phylogeny brings a new perspective to a number of outstanding issues in evolutionary biology, including the analysis of large phylogenetic trees and complex evolutionary models and the detection of the footprint of natural selection in DNA sequences.

2,524 citations


Journal ArticleDOI
01 Feb 2004-Systematic Biology
TL;DR: A Bayesian MCMC approach to the analysis of combined data sets was developed and its utility in inferring relationships among gall wasps based on data from morphology and four genes was explored, supporting the utility of morphological data in multigene analyses.
Abstract: The recent development of Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) techniques has facilitated the exploration of parameter-rich evolutionary models. At the same time, stochastic models have become more realistic (and complex) and have been extended to new types of data, such as morphology. Based on this foundation, we developed a Bayesian MCMC approach to the analysis of combined data sets and explored its utility in inferring relationships among gall wasps based on data from morphology and four genes (nuclear and mitochondrial, ribosomal and protein coding). Examined models range in complexity from those recognizing only a morphological and a molecular partition to those having complex substitution models with independent parameters for each gene. Bayesian MCMC analysis deals efficiently with complex models: convergence occurs faster and more predictably for complex models, mixing is adequate for all parameters even under very complex models, and the parameter update cycle is virtually unaffected by model partitioning across sites. Morphology contributed only 5% of the characters in the data set but nevertheless influenced the combined-data tree, supporting the utility of morphological data in multigene analyses. We used Bayesian criteria (Bayes factors) to show that process heterogeneity across data partitions is a significant model component, although not as important as among-site rate variation. More complex evolutionary models are associated with more topological uncertainty and less conflict between morphology and molecules. Bayes factors sometimes favor simpler models over considerably more parameter-rich models, but the best model overall is also the most complex and Bayes factors do not support exclusion of apparently weak parameters from this model. Thus, Bayes factors appear to be useful for selecting among complex models, but it is still unclear whether their use strikes a reasonable balance between model complexity and error in parameter estimates.

1,681 citations


Cited by
More filters

Journal ArticleDOI
12 Aug 2003-Bioinformatics
TL;DR: MrBayes 3 performs Bayesian phylogenetic analysis combining information from different data partitions or subsets evolving under different stochastic evolutionary models to analyze heterogeneous data sets and explore a wide variety of structured models mixing partition-unique and shared parameters.
Abstract: Summary: MrBayes 3 performs Bayesian phylogenetic analysis combining information from different data partitions or subsets evolving under different stochastic evolutionary models. This allows the user to analyze heterogeneous data sets consisting of different data types—e.g. morphological, nucleotide, and protein— and to explore a wide variety of structured models mixing partition-unique and shared parameters. The program employs MPI to parallelize Metropolis coupling on Macintosh or UNIX clusters.

24,102 citations


Journal ArticleDOI
01 Oct 2003-Systematic Biology
TL;DR: This work has used extensive and realistic computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing maximum-likelihood programs and much higher than the performance of distance-based and parsimony approaches.
Abstract: The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximum- likelihood principle, which clearly satisfies these requirements. The core of this method is a simple hill-climbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distance-based method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment of the topology and branch lengths, only a few iterations are sufficient to reach an optimum. We used extensive and realistic computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing maximum-likelihood programs and much higher than the performance of distance-based and parsimony approaches. The reduction of computing time is dramatic in comparison with other maximum-likelihood packages, while the likelihood maximization ability tends to be higher. For example, only 12 min were required on a standard personal computer to analyze a data set consisting of 500 rbcL sequences with 1,428 base pairs from plant plastids, thus reaching a speed of the same order as some popular distance-based and parsimony algorithms. This new method is implemented in the PHYML program, which is freely available on our web page: http://www.lirmm.fr/w3ifa/MAAS/. (Algorithm; computer simulations; maximum likelihood; phylogeny; rbcL; RDPII project.) The size of homologous sequence data sets has in- creased dramatically in recent years, and many of these data sets now involve several hundreds of taxa. More- over, current probabilistic sequence evolution models (Swofford et al., 1996 ; Page and Holmes, 1998 ), notably those including rate variation among sites (Uzzell and Corbin, 1971 ; Jin and Nei, 1990 ; Yang, 1996 ), require an increasing number of calculations. Therefore, the speed of phylogeny reconstruction methods is becoming a sig- nificant requirement and good compromises between speed and accuracy must be found. The maximum likelihood (ML) approach is especially accurate for building molecular phylogenies. Felsenstein (1981) brought this framework to nucleotide-based phy- logenetic inference, and it was later also applied to amino acid sequences (Kishino et al., 1990). Several vari- ants were proposed, most notably the Bayesian meth- ods (Rannala and Yang 1996; and see below), and the discrete Fourier analysis of Hendy et al. (1994), for ex- ample. Numerous computer studies (Huelsenbeck and Hillis, 1993; Kuhner and Felsenstein, 1994; Huelsenbeck, 1995; Rosenberg and Kumar, 2001; Ranwez and Gascuel, 2002) have shown that ML programs can recover the cor- rect tree from simulated data sets more frequently than other methods can. Another important advantage of the ML approach is the ability to compare different trees and evolutionary models within a statistical framework (see Whelan et al., 2001, for a review). However, like all optimality criterion-based phylogenetic reconstruction approaches, ML is hampered by computational difficul- ties, making it impossible to obtain the optimal tree with certainty from even moderate data sets (Swofford et al., 1996). Therefore, all practical methods rely on heuristics that obtain near-optimal trees in reasonable computing time. Moreover, the computation problem is especially difficult with ML, because the tree likelihood not only depends on the tree topology but also on numerical pa- rameters, including branch lengths. Even computing the optimal values of these parameters on a single tree is not an easy task, particularly because of possible local optima (Chor et al., 2000). The usual heuristic method, implemented in the pop- ular PHYLIP (Felsenstein, 1993 ) and PAUP ∗ (Swofford, 1999 ) packages, is based on hill climbing. It combines stepwise insertion of taxa in a growing tree and topolog- ical rearrangement. For each possible insertion position and rearrangement, the branch lengths of the resulting tree are optimized and the tree likelihood is computed. When the rearrangement improves the current tree or when the position insertion is the best among all pos- sible positions, the corresponding tree becomes the new current tree. Simple rearrangements are used during tree growing, namely "nearest neighbor interchanges" (see below), while more intense rearrangements can be used once all taxa have been inserted. The procedure stops when no rearrangement improves the current best tree. Despite significant decreases in computing times, no- tably in fastDNAml (Olsen et al., 1994 ), this heuristic becomes impracticable with several hundreds of taxa. This is mainly due to the two-level strategy, which sepa- rates branch lengths and tree topology optimization. In- deed, most calculations are done to optimize the branch lengths and evaluate the likelihood of trees that are finally rejected. New methods have thus been proposed. Strimmer and von Haeseler (1996) and others have assembled four- taxon (quartet) trees inferred by ML, in order to recon- struct a complete tree. However, the results of this ap- proach have not been very satisfactory to date (Ranwez and Gascuel, 2001 ). Ota and Li (2000, 2001) described

15,495 citations


Journal ArticleDOI
01 May 2012-Systematic Biology
TL;DR: The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly, and provides more output options than previously, including samples of ancestral states, site rates, site dN/dS rations, branch rates, and node dates.
Abstract: Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.

14,723 citations


Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,169 citations


Journal ArticleDOI
01 Oct 2006-Bioinformatics
TL;DR: UNLABELLED RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML) that has been used to compute ML trees on two of the largest alignments to date.
Abstract: Summary: RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Γ yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets ≥4000 taxa it also runs 2--3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25 057 (1463 bp) and 2182 (51 089 bp) taxa, respectively. Availability: icwww.epfl.ch/~stamatak Contact: Alexandros.Stamatakis@epfl.ch Supplementary information: Supplementary data are available at Bioinformatics online.

13,926 citations


Network Information
Related Authors (5)
Johan Liljeblad

15 papers, 1K citations

85% related
Dave Karlsson

9 papers, 211 citations

83% related
Mattias Forshage

32 papers, 424 citations

79% related
Sven Olof Ulefors

2 papers, 11 citations

79% related
Sibylle Häggqvist

6 papers, 49 citations

77% related
Performance
Metrics

Author's H-index: 54

No. of papers from the Author in previous years
YearPapers
202110
202010
20199
20183
20171
20166

Top Attributes

Show by:

Author's top 5 most impactful journals

Systematic Biology

22 papers, 21.8K citations

bioRxiv

13 papers, 42 citations

Systematic Entomology

7 papers, 412 citations

Cladistics

6 papers, 433 citations