scispace - formally typeset
Search or ask a question
Author

Freédésrique Gouriet

Bio: Freédésrique Gouriet is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Mass spectrometry & Time-of-flight mass spectrometry. The author has an hindex of 1, co-authored 1 publications receiving 1568 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) to identify both selected bacteria and bacteria in select clinical situations.
Abstract: Background. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. Methods. We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria regardless of phylum or source of isolation. Discrepancies were resolved by 16S ribosomal RNA and rpoB gene sequence-based molecular identification. Colonies (4 spots per isolate directly deposited on the MALDI-TOF plate) were analyzed using an Autoflex II Bruker Daltonik mass spectrometer. Peptidic spectra were compared with the Bruker BioTyper database, version 2.0, and the identification score was noted. Delays and costs of identification were measured. Results. Of 1660 bacterial isolates analyzed, 95.4% were correctly identified by MALDI-TOF mass spectrometry; 84.1% were identified at the species level, and 11.3% were identified at the genus level. In most cases, absence of identification (2.8% of isolates) and erroneous identification (1.7% of isolates) were due to improper database entries. Accurate MALDI-TOF mass spectrometry identification was significantly correlated with having 10 reference spectra in the database (P = .01). The mean time required for MALDI-TOF mass spectrometry identification of 1 isolate was 6 minutes for an estimated 22%-32% cost of current methods of identification. Conclusions. MALDI-TOF mass spectrometry is a cost-effective, accurate method for routine identification of bacterial isolates in <1 h using a database comprising ≥10 reference spectra per bacterial species and a ≥1.9 identification score (Brucker system). It may replace Gram staining and biochemical identification in the near future.

1,695 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the status and recent applications of mass spectrometry for microbial identification is provided and the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi is explored.
Abstract: Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.

985 citations

Journal ArticleDOI
TL;DR: Culturomics complements metagenomics by overcoming the depth bias inherent in metagenomic approaches, and identifies 174 species never described previously in the human gut.

893 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the results of a study at the University of Medicine and Therapeutics of the Chinese University of Hong Kong, Hong Kong and University of Pittsburgh School of Medicine.
Abstract: Department of Medicine and Therapeutics,1 Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong; University of Pittsburgh School of Medicine,2 Pittsburgh, PA, USA; Faculdade de Enfermagem, Nutrição e Fisioterapia,3 Pontifícia Universidade Católica do Rio Grande do Sul, Brazil; Sanjay Gandhi Postgraduate Institute of Medical Sciences,4 Lucknow, India; Department of Nephrology,5 Princess Alexandra Hospital, and School of Medicine, University of Queensland, Brisbane, Australia; Department of Medical Microbiology,6 Leiden University Medical Center, Leiden, The Netherlands; Centre for Kidney Diseases,7 Mount Elizabeth Medical Centre, Singapore; Section of Infectious Disease,8 Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Pediatric Nephrology Division,9 University Children’s Hospital, Heidelberg, Germany; Dianet Dialysis Centers,10 Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

847 citations

Journal ArticleDOI
TL;DR: MALDI-TOF MS has been used successfully for microbial typing and identification at the subspecies level, demonstrating that this technology is a potential efficient tool for epidemiological studies and for taxonomical classification.
Abstract: Until recently, microbial identification in clinical diagnostic laboratories has mainly relied on conventional phenotypic and gene sequencing identification techniques. The development of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) devices has revolutionized the routine identification of microorganisms in clinical microbiology laboratories by introducing an easy, rapid, high throughput, low-cost, and efficient identification technique. This technology has been adapted to the constraint of clinical diagnostic laboratories and has the potential to replace and/or complement conventional identification techniques for both bacterial and fungal strains. Using standardized procedures, the resolution of MALDI-TOF MS allows accurate identification at the species level of most Gram-positive and Gram-negative bacterial strains with the exception of a few difficult strains that require more attention and further development of the method. Similarly, the routine identification by MALDI-TOF MS of yeast isolates is reliable and much quicker than conventional techniques. Recent studies have shown that MALDI-TOF MS has also the potential to accurately identify filamentous fungi and dermatophytes, providing that specific standardized procedures are established for these microorganisms. Moreover, MALDI-TOF MS has been used successfully for microbial typing and identification at the subspecies level, demonstrating that this technology is a potential efficient tool for epidemiological studies and for taxonomical classification.

744 citations

Journal ArticleDOI
TL;DR: It is shown that the use of culturomics allows the culture of organisms corresponding to sequences previously not assigned, which doubles the number of species isolated at least once from the human gut.
Abstract: Metagenomics revolutionized the understanding of the relations among the human microbiome, health and diseases, but generated a countless number of sequences that have not been assigned to a known microorganism1. The pure culture of prokaryotes, neglected in recent decades, remains essential to elucidating the role of these organisms2. We recently introduced microbial culturomics, a culturing approach that uses multiple culture conditions and matrix-assisted laser desorption/ionization–time of flight and 16S rRNA for identification2. Here, we have selected the best culture conditions to increase the number of studied samples and have applied new protocols (fresh-sample inoculation; detection of microcolonies and specific cultures of Proteobacteria and microaerophilic and halophilic prokaryotes) to address the weaknesses of the previous studies3–5. We identified 1,057 prokaryotic species, thereby adding 531 species to the human gut repertoire: 146 bacteria known in humans but not in the gut, 187 bacteria and 1 archaea not previously isolated in humans, and 197 potentially new species. Genome sequencing was performed on the new species. By comparing the results of the metagenomic and culturomic analyses, we show that the use of culturomics allows the culture of organisms corresponding to sequences previously not assigned. Altogether, culturomics doubles the number of species isolated at least once from the human gut. Optimization of culturing techniques has allowed the identification of 1,057 prokaryotic species within the human gut microbiome repertoire, doubling the previous number of isolated species from the human gut.

697 citations