scispace - formally typeset
Search or ask a question
Author

Fritz L. Lorscheider

Bio: Fritz L. Lorscheider is an academic researcher from University of Calgary. The author has contributed to research in topics: Multiple choice & Amalgam (dentistry). The author has an hindex of 14, co-authored 19 publications receiving 783 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Animal and human experiments demonstrate that the uptake, tissue distribution, and excretion of amalgam Hg is significant, and that dental amalgam is the major contributing source to Hg body burden in humans.
Abstract: For more than 160 years dentistry has used silver amalgam, which contains approximately 50% Hg metal, as the preferred tooth filling material. During the past decade medical research has demonstrated that this Hg is continuously released as vapor into mouth air; then it is inhaled, absorbed into body tissues, oxidized to ionic Hg, and finally covalently bound to cell proteins. Animal and human experiments demonstrate that the uptake, tissue distribution, and excretion of amalgam Hg is significant, and that dental amalgam is the major contributing source to Hg body burden in humans. Current research on the pathophysiological effects of amalgam Hg has focused upon the immune system, renal system, oral and intestinal bacteria, reproductive system, and the central nervous system. Research evidence does not support the notion of amalgam safety.

178 citations

Journal ArticleDOI
TL;DR: This investigation demonstrates that when radioactive 203Hg is mixed with dental Hg/silver fillings (amalgam) and placed in teeth of adult sheep, the isotope will appear in various organs and tissues within 29 days.
Abstract: Mercury (Hg) vapor is released from dental "silver" tooth fillings into human mouth air after chewing, but its possible uptake routes and distribution among body tissues are unknown. This investigation demonstrates that when radioactive 203Hg is mixed with dental Hg/silver fillings (amalgam) and placed in teeth of adult sheep, the isotope will appear in various organs and tissues within 29 days. Evidence of Hg uptake, as determined by whole-body scanning and measurement of isotope in specific tissues, revealed three uptake sites: lung, gastrointestinal, and jaw tissue absorption. Once absorbed, high concentrations of dental amalgam Hg rapidly localize in kidneys and liver. Results are discussed in view of potential health consequences from long-term exposure to Hg from this dental material.

122 citations

Journal ArticleDOI
TL;DR: The dental profession's advocacy of silver amalgam as a stable tooth restorative material is not supported by these findings.
Abstract: The fate of mercury (Hg) released from dental "silver" amalgam tooth fillings into human mouth air is uncertain. A previous report about sheep revealed uptake routes and distribution of amalgam Hg among body tissues. The present investigation demonstrates the bodily distribution of amalgam Hg in a monkey whose dentition, diet, feeding regimen, and chewing pattern closely resemble those of humans. When amalgam fillings, which normally contain 50% Hg, are made with a tracer of radioactive 203Hg and then placed into monkey teeth, the isotope appears in high concentration in various organs and tissues within 4 wk. Whole-body images of the monkey revealed that the highest levels of Hg were located in the kidney, gastrointestinal tract, and jaw. The dental profession's advocacy of silver amalgam as a stable tooth restorative material is not supported by these findings.

104 citations

Journal ArticleDOI
TL;DR: It was concluded that Hg originating from maternal amalgam tooth fillings transfers across the placenta to the fetus, across the mammary gland into milk ingested by the newborn, and ultimately into neonatal body tissues.
Abstract: Neonatal uptake of mercury (Hg) from milk was examined in a pregnant sheep model, where radioactive mercury (Hg203)/silver tooth fillings (amalgam) were newly placed. A crossover experimental design was used in which lactating ewes nursed foster lambs. In a parallel study, the relationship between dental history and breast milk concentration of Hg was also examined in 33 lactating women. Results from the animal studies showed that, during pregnancy, a primary fetal site of amalgam Hg concentration is the liver, and, after delivery, the neonatal lamb kidney receives additional amalgam Hg from mother's milk. In lactating women with aged amalgam fillings, increased Hg excretion in breast milk and urine correlated with the number of fillings or Hg vapor concentration levels in mouth air. It was concluded that Hg originating from maternal amalgam tooth fillings transfers across the placenta to the fetus, across the mammary gland into milk ingested by the newborn, and ultimately into neonatal body tissues. Comparisons are made to the U. S. minimal risk level recently established for adult Hg exposure. These findings suggest that placement and removal of "silver" tooth fillings in pregnant and lactating humans will subject the fetus and neonate to unnecessary risk of Hg exposure.

54 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review describes the workings of known metal-resistance systems in microorganisms and the transport of the 17 most important (heavy metal) elements is compared.
Abstract: We are just beginning to understand the metabolism of heavy metals and to use their metabolic functions in biotechnology, although heavy metals comprise the major part of the elements in the periodic table. Because they can form complex compounds, some heavy metal ions are essential trace elements, but, essential or not, most heavy metals are toxic at higher concentrations. This review describes the workings of known metal-resistance systems in microorganisms. After an account of the basic principles of homoeostasis for all heavy-metal ions, the transport of the 17 most important (heavy metal) elements is compared.

2,342 citations

Journal ArticleDOI
TL;DR: Resistance to silver compounds as determined by bacterial plasmids and genes has been defined by molecular genetics and the use of molecular epidemiological tools will establish the range and diversity of such resistance systems in clinical and non-clinical sources.
Abstract: Resistance to silver compounds as determined by bacterial plasmids and genes has been defined by molecular genetics. Silver resistance conferred by the Salmonella plasmid pMGH100 involves nine genes in three transcription units. A sensor/responder (SilRS) two-component transcriptional regulatory system governs synthesis of a periplasmic Ag(I)-binding protein (SilE) and two efflux pumps (a P-type ATPase (SilP) plus a three-protein chemiosmotic RND Ag(I)/H+ exchange system (SilCBA)). The same genes were identified on five of 19 additional IncH incompatibility class plasmids but thus far not on other plasmids. Of 70 random enteric isolates from a local hospital, isolates from catheters and other Ag-exposed sites, and total genomes of enteric bacteria, 10 have recognizable sil genes. The centrally located six genes are found and functional in the chromosome of Escherichia coli K-12, and also occur on the genome of E. coli O157:H7. The use of molecular epidemiological tools will establish the range and diversity of such resistance systems in clinical and non-clinical sources. Silver compounds are used widely as effective antimicrobial agents to combat pathogens (bacteria, viruses and eukaryotic microorganisms) in the clinic and for public health hygiene. Silver cations (Ag+) are microcidal at low concentrations and used to treat burns, wounds and ulcers. Ag is used to coat catheters to retard microbial biofilm development. Ag is used in hygiene products including face creams, ‘alternative medicine’ health supplements, supermarket products for washing vegetables, and water filtration cartridges. Ag is generally without adverse effects for humans, and argyria (irreversible discoloration of the skin resulting from subepithelial silver deposits) is rare and mostly of cosmetic concern.

1,257 citations

Journal ArticleDOI
TL;DR: D diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability and effective therapies for clinical toxicity have been described.
Abstract: Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described.

791 citations

Journal ArticleDOI
TL;DR: A taxonomy of 31 multiple-choice item-writing guidelines was validated through a logical process that included two sources of evidence: the consensus achieved from reviewing what was found in 27 textbooks on educational testing and the results of 27 research studies and reviews published since 1990.
Abstract: A taxonomy of 31 multiple-choice item-writing guidelines was validated through a logical process that included two sources of evidence: the consensus achieved from reviewing what was found in 27 textbooks on educational testing and the results of 27 research studies and reviews published since 1990. This taxonomy is mainly intended for classroom assessment. Because textbooks have potential to educate teachers and future teachers, textbook writers are encouraged to consider these findings in future editions of their textbooks. This taxonomy may also have usefulness for developing test items for large-scale assessments. Finally, research on multiple-choice item writing is discussed both from substantive and methodological viewpoints.

771 citations

Journal ArticleDOI
TL;DR: This review provides an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.
Abstract: Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

765 citations