scispace - formally typeset
Search or ask a question
Author

Fritz-Olaf Lehmann

Bio: Fritz-Olaf Lehmann is an academic researcher from University of Rostock. The author has contributed to research in topics: Wing & Aerodynamic force. The author has an hindex of 27, co-authored 64 publications receiving 6670 citations. Previous affiliations of Fritz-Olaf Lehmann include University of California, Berkeley & National Institute of Technology, Tiruchirappalli.


Papers
More filters
Journal ArticleDOI
18 Jun 1999-Science
TL;DR: In this paper, the authors show that the enhanced aerodynamic performance of insects results from an interaction of three distinct yet interactive mechanisms: delayed stall, rotational circulation, and wake capture.
Abstract: The enhanced aerodynamic performance of insects results from an interaction of three distinct yet interactive mechanisms: delayed stall, rotational circulation, and wake capture. Delayed stall functions during the translational portions of the stroke, when the wings sweep through the air with a large angle of attack. In contrast, rotational circulation and wake capture generate aerodynamic forces during stroke reversals, when the wings rapidly rotate and change direction. In addition to contributing to the lift required to keep an insect aloft, these two rotational mechanisms provide a potent means by which the animal can modulate the direction and magnitude of flight forces during steering maneuvers. A comprehensive theory incorporating both translational and rotational mechanisms may explain the diverse patterns of wing motion displayed by different species of insects.

2,246 citations

08 Mar 2001
TL;DR: A comprehensive theory incorporating both translational and rotational mechanisms may explain the diverse patterns of wing motion displayed by different species of insects.
Abstract: The enhanced aerodynamic performance of insects results from an interaction of three distinct yet interactive mechanisms: delayed stall, rotational circulation, and wake capture. Delayed stall functions during the translational portions of the stroke, when the wings sweep through the air with a large angle of attack. In contrast, rotational circulation and wake capture generate aerodynamic forces during stroke reversals, when the wings rapidly rotate and change direction. In addition to contributing to the lift required to keep an insect aloft, these two rotational mechanisms provide a potent means by which the animal can modulate the direction and magnitude of flight forces during steering maneuvers. A comprehensive theory incorporating both translational and rotational mechanisms may explain the diverse patterns of wing motion displayed by different species of insects.

2,133 citations

Journal ArticleDOI
TL;DR: It is determined that muscle efficiency rises with increasing force production to a maximum of 10%.
Abstract: The limits of flight performance have been estimated in tethered Drosophila melanogaster by modulating power requirements in a 'virtual reality' flight arena. At peak capacity, the flight muscles can sustain a mechanical power output of nearly 80 W kg-1 muscle mass at 24 degrees C, which is sufficient to generate forces of approximately 150% of the animal's weight. The increase in flight force above that required to support body weight is accompanied by a rise in wing velocity, brought about by an increase in stroke amplitude and a decrease in stroke frequency. Inertial costs, although greater than either profile or induced power, would be minimal with even modest amounts of elastic storage, and total mechanical power energy should be equivalent to aerodynamic power alone. Because of the large profile drag expected at low Reynolds numbers, the profile power was approximately twice the induced power at all levels of force generation. Thus, it is the cost of overcoming drag, and not the production of lift, that is the primary requirement for flight in Drosophila melanogaster. By comparing the estimated mechanical power output with respirometrically measured total power input, we determined that muscle efficiency rises with increasing force production to a maximum of 10%. This change in efficiency may reflect either increased crossbridge activation or a favorable strain regime during the production of peak forces.

308 citations

Journal ArticleDOI
TL;DR: The results suggest that lift enhancement during clap-and-fling requires an angular separation between the two wings of no more than 10–12°, and that the presence of the image wing presumably causes subtle modifications in both the wake capture and viscous forces.
Abstract: We employed a dynamically scaled mechanical model of the small fruit fly Drosophila melanogaster (Reynolds number 100–200) to investigate force enhancement due to contralateral wing interactions during stroke reversal (the 'clap-and-fling'). The results suggest that lift enhancement during clap-and-fling requires an angular separation between the two wings of no more than 10–12°. Within the limitations of the robotic apparatus, the clap-and-fling augmented total lift production by up to 17%, but depended strongly on stroke kinematics. The time course of the interaction between the wings was quite complex. For example, wing interaction attenuated total force during the initial part of the wing clap, but slightly enhanced force at the end of the clap phase. We measured two temporally transient peaks of both lift and drag enhancement during the fling phase: a prominent peak during the initial phase of the fling motion, which accounts for most of the benefit in lift production, and a smaller peak of force enhancement at the end fling when the wings started to move apart. A detailed digital particle image velocimetry (DPIV) analysis during clap-and-fling showed that the most obvious effect of the bilateral 'image' wing on flow occurs during the early phase of the fling, due to a strong fluid influx between the wings as they separate. The DPIV analysis revealed, moreover, that circulation induced by a leading edge vortex (LEV) during the early fling phase was smaller than predicted by inviscid two-dimensional analytical models, whereas circulation of LEV nearly matched the predictions of Weis-Fogh's inviscid model at late fling phase. In addition, the presence of the image wing presumably causes subtle modifications in both the wake capture and viscous forces. Collectively, these effects explain some of the changes in total force and lift production during the fling. Quite surprisingly, the effect of clap-and-fling is not restricted to the dorsal part of the stroke cycle but extends to the beginning of upstroke, suggesting that the presence of the image wing distorts the gross wake structure throughout the stroke cycle.

207 citations

Journal ArticleDOI
TL;DR: Man manipulation of the translational and rotational aerodynamic mechanisms may provide a potent means by which a flying animal can modulate direction and magnitude of flight forces for manoeuvring flight control and steering behaviour.
Abstract: Recent studies have revealed a diverse array of fluid dynamic phenomena that enhance lift production during flapping insect flight. Physical and analytical models of oscillating wings have demonstrated that a prominent vortex attached to the wing’s leading edge augments lift production throughout the translational parts of the stroke cycle, whereas aerodynamic circulation due to wing rotation, and possibly momentum transfer due to a recovery of wake energy, may increase lift at the end of each half stroke. Compared to the predictions derived from conventional steady-state aerodynamic theory, these unsteady aerodynamic mechanisms may account for the majority of total lift produced by a flying insect. In addition to contributing to the lift required to keep the insect aloft, manipulation of the translational and rotational aerodynamic mechanisms may provide a potent means by which a flying animal can modulate direction and magnitude of flight forces for manoeuvring flight control and steering behaviour. The attainment of flight, including the ability to control aerodynamic forces by the neuromuscular system, is a classic paradigm of the remarkable adaptability that flying insects have for utilising the principles of unsteady fluid dynamics. Applying these principles to biology broadens our understanding of how the diverse patterns of wing motion displayed by the different insect species have been developed throughout their long evolutionary history.

173 citations


Cited by
More filters
Journal ArticleDOI
07 Apr 2000-Science
TL;DR: Muscles have a surprising variety of functions in locomotion, serving as motors, brakes, springs, and struts, and how they function as a collective whole is revealed.
Abstract: Recent advances in integrative studies of locomotion have revealed several general principles. Energy storage and exchange mechanisms discovered in walking and running bipeds apply to multilegged locomotion and even to flying and swimming. Nonpropulsive lateral forces can be sizable, but they may benefit stability, maneuverability, or other criteria that become apparent in natural environments. Locomotor control systems combine rapid mechanical preflexes with multimodal sensory feedback and feedforward commands. Muscles have a surprising variety of functions in locomotion, serving as motors, brakes, springs, and struts. Integrative approaches reveal not only how each component within a locomotor system operates but how they function as a collective whole.

1,468 citations

Journal ArticleDOI
TL;DR: The basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well as the different approaches used to model these phenomena are reviewed.
Abstract: The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well as the different approaches used to model these phenomena.

1,182 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: This work identifies scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.
Abstract: We are witnessing the advent of a new era of robots - drones - that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.

956 citations

Journal ArticleDOI
03 May 2013-Science
TL;DR: An 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies is built and demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers, which validates a sufficient suite of innovations for achieving artificial, insects-like flight.
Abstract: Flies are among the most agile flying creatures on Earth To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers The result validates a sufficient suite of innovations for achieving artificial, insect-like flight

929 citations

Journal ArticleDOI
TL;DR: It is shown how novel manufacturing paradigms enable the creation of the mechanical and aeromechanical subsystems of a microrobotic device that is capable of Diptera-like wing trajectories, and the results are a uniquemicrorobot: a 60 mg robotic insect that can produce sufficient thrust to accelerate vertically.
Abstract: Biology is a useful tool when applied to engineering challenges that have been solved in nature. Here, the emulous goal of creating an insect-sized, truly micro air vehicle is addressed by first exploring biological principles. These principles give insights on how to generate sufficient thrust to sustain flight for centimeter-scale vehicles. Here, it is shown how novel manufacturing paradigms enable the creation of the mechanical and aeromechanical subsystems of a microrobotic device that is capable of Diptera-like wing trajectories. The results are a unique microrobot: a 60 mg robotic insect that can produce sufficient thrust to accelerate vertically. Although still externally powered, this micromechanical device represents significant progress toward the creation of autonomous insect-sized micro air vehicles.

878 citations