scispace - formally typeset
Search or ask a question
Author

Fulya Gulbagca

Bio: Fulya Gulbagca is an academic researcher. The author has contributed to research in topics: Catalysis & Photocatalysis. The author has an hindex of 5, co-authored 10 publications receiving 153 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The cytotoxicity and bacterial tests showed the effectiveness of biogenic Pt nanoparticles, and Pt NPs showed high zone diameters against gram-positive and gram-negative bacteria at concentrations of 100 and 500 μg/ml.

97 citations

Journal ArticleDOI
01 Dec 2019-Heliyon
TL;DR: Rc-Ag NPs synthesized were found to be highly effective for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities.

70 citations

Journal ArticleDOI
TL;DR: The prepared Pt-Co@rGO-based biosensor showed high electrochemical activity, a broad linear response, high sensitivity, and acceptable limit of detection values for individual and simultaneous determination of AA, DA, and UA, under optimized conditions.
Abstract: The ultimate aim of this study is to produce a composite of bimetallic platinum-cobalt nanoparticles and reduced graphene oxide (Pt-Co@rGO) based biosensor for the detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Those are biologically important molecules with the key functions for the human body. Pt-Co@rGO was synthesized using a microwave-assisted technique and utilized for the production of a highly sensitive and stable electrochemical biosensor. Detailed spectral XPS and Raman analysis, XRD, and TEM/HR-TEM characterization were also studied. Due to the superior activity and excellent conductivity of rGO, well-separated oxidation peaks of these biomolecules is proven by DPV (differential pulse voltammetry) and CV (cyclic voltammetry) measurements. The prepared Pt-Co@rGO-based biosensor showed high electrochemical activity, a broad linear response, high sensitivity, and acceptable limit of detection values for individual and simultaneous determination of AA, DA, and UA, under optimized conditions. The linear range of Pt-Co@rGO was found to be 170–200; 35–1500 and 5–800 µM for AA, DA, and UA, respectively. Moreover, the detection limit of the prepared composite was calculated as 0.345; 0.051; 0.172 µM for AA, DA, and UA, respectively. In the field of electrochemical biosensors, Pt-Co@rGO based sensor is highly promising due to its superior sensitivity and good selectivity properties.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the principles of green chemistry and their application in plant-mediated synthesis of nanoparticles and their recent applications are reviewed. But the use of biological materials such as plants is usually safe.
Abstract: Green synthesis of nanoparticles has many potential applications in environmental and biomedical fields. Green synthesis aims in particular at decreasing the usage of toxic chemicals. For instance, the use of biological materials such as plants is usually safe. Plants also contain reducing and capping agents. Here we present the principles of green chemistry, and we review plant-mediated synthesis of nanoparticles and their recent applications. Nanoparticles include gold, silver, copper, palladium, platinum, zinc oxide, and titanium dioxide.

337 citations

Journal ArticleDOI
TL;DR: Comision Nacional de Investigacion Cientificifica y Tecnologica (CONICYT)================== CONICYTE-FONDECIYT FONDECYT============¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯1117041414============ À£€££€€£ £€€€ ££££ ££€ £€£

313 citations

Journal ArticleDOI
TL;DR: The mechanism and different examples of DNA, enzymatic and electro-catalytic methods for electroanalytical determination of drug, food and environmental compounds are described.
Abstract: Analysis of food, pharmaceutical, and environmental compounds is an inevitable issue to evaluate quality of the compounds used in human life. Quality of drinking water, food products, and pharmaceutical compounds is directly associated with human health. Presence of forbidden additives in food products, toxic compounds in water samples and drugs with low quality lead to important problems for human health. Therefore, attention to analytical strategy for investigation of quality of food, pharmaceutical, and environmental compounds and monitoring presence of forbidden compounds in materials used by humans has increased in recent years. Analytical methods help to identify and quantify both permissible and unauthorized compounds present in the materials used in human daily life. Among analytical methods, electrochemical methods have been shown to have more advantages compared to other analytical methods due to their portability and low cost. Most of big companies have applied this type of analytical methods because of their fast and selective analysis. Due to simple operation and high diversity of electroanalytical sensors, these types of sensors are expected to be the future generation of analytical systems. Therefore, many scientists and researchers have focused on designing and fabrication of electroanalytical sensors with good selectivity and high sensitivity for different types of compounds such as drugs, food, and environmental pollutants. In this paper, we described the mechanism and different examples of DNA, enzymatic and electro-catalytic methods for electroanalytical determination of drug, food and environmental compounds.

286 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis and application of palladium-nickel nanoparticles decorated on functionalized-multiwall carbon nanotube Pd-Ni@f-MWCNT and employed as a sensitive nonenzymatic electrochemical glucose sensor was reported.

236 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a systematic in-depth discussion on the possible influence of phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs.
Abstract: Synthesis of metal nanoparticles using plant extracts is one of the most simple, convenient, economical, and environmentally friendly methods that mitigate the involvement of toxic chemicals. Hence, in recent years, several eco-friendly processes for the rapid synthesis of silver nanoparticles have been reported using aqueous extracts of plant parts such as the leaf, bark, roots, etc. This review summarizes and elaborates the new findings in this research domain of the green synthesis of silver nanoparticles (AgNPs) using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015. While highlighting the recently used different plants for the synthesis of highly efficient antimicrobial green AgNPs, we aim to provide a systematic in-depth discussion on the possible influence of the phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs. Exhaustive details of the plausible mechanism of the interaction of AgNPs with the cell wall of microbes, leading to cell death, and high antimicrobial activities have also been elaborated. The shape and size-dependent antimicrobial activities of the biogenic AgNPs and the enhanced antimicrobial activities by synergetic interaction of AgNPs with known commercial antibiotic drugs have also been comprehensively detailed.

190 citations