scispace - formally typeset
Search or ask a question
Author

Fumin Shen

Bio: Fumin Shen is an academic researcher from University of Electronic Science and Technology of China. The author has contributed to research in topics: Hash function & Universal hashing. The author has an hindex of 44, co-authored 221 publications receiving 8028 citations. Previous affiliations of Fumin Shen include University of Adelaide & Nanjing University of Science and Technology.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: This work proposes a new supervised hashing framework, where the learning objective is to generate the optimal binary hash codes for linear classification, and introduces an auxiliary variable to reformulate the objective such that it can be solved substantially efficiently by employing a regularization algorithm.
Abstract: Recently, learning based hashing techniques have attracted broad research interests because they can support efficient storage and retrieval for high-dimensional data such as images, videos, documents, etc. However, a major difficulty of learning to hash lies in handling the discrete constraints imposed on the pursued hash codes, which typically makes hash optimizations very challenging (NP-hard in general). In this work, we propose a new supervised hashing framework, where the learning objective is to generate the optimal binary hash codes for linear classification. By introducing an auxiliary variable, we reformulate the objective such that it can be solved substantially efficiently by employing a regularization algorithm. One of the key steps in this algorithm is to solve a regularization sub-problem associated with the NP-hard binary optimization. We show that the sub-problem admits an analytical solution via cyclic coordinate descent. As such, a high-quality discrete solution can eventually be obtained in an efficient computing manner, therefore enabling to tackle massive datasets. We evaluate the proposed approach, dubbed Supervised Discrete Hashing (SDH), on four large image datasets and demonstrate its superiority to the state-of-the-art hashing methods in large-scale image retrieval.

923 citations

Posted Content
TL;DR: Supervised Discrete Hashing (SDH) as mentioned in this paper proposes a new supervised hashing framework, where the learning objective is to generate the optimal binary hash codes for linear classification, which can support efficient storage and retrieval for high-dimensional data such as images, videos, documents, etc.
Abstract: Recently, learning based hashing techniques have attracted broad research interests because they can support efficient storage and retrieval for high-dimensional data such as images, videos, documents, etc. However, a major difficulty of learning to hash lies in handling the discrete constraints imposed on the pursued hash codes, which typically makes hash optimizations very challenging (NP-hard in general). In this work, we propose a new supervised hashing framework, where the learning objective is to generate the optimal binary hash codes for linear classification. By introducing an auxiliary variable, we reformulate the objective such that it can be solved substantially efficiently by employing a regularization algorithm. One of the key steps in this algorithm is to solve a regularization sub-problem associated with the NP-hard binary optimization. We show that the sub-problem admits an analytical solution via cyclic coordinate descent. As such, a high-quality discrete solution can eventually be obtained in an efficient computing manner, therefore enabling to tackle massive datasets. We evaluate the proposed approach, dubbed Supervised Discrete Hashing (SDH), on four large image datasets and demonstrate its superiority to the state-of-the-art hashing methods in large-scale image retrieval.

807 citations

Journal ArticleDOI
TL;DR: A novel cross- modal hashing method, termed discrete cross-modal hashing (DCH), which directly learns discriminative binary codes while retaining the discrete constraints, and an effective discrete optimization algorithm is developed for DCH to jointly learn the modality-specific hash function and the unified binary codes.
Abstract: Hashing based methods have attracted considerable attention for efficient cross-modal retrieval on large-scale multimedia data. The core problem of cross-modal hashing is how to learn compact binary codes that construct the underlying correlations between heterogeneous features from different modalities. A majority of recent approaches aim at learning hash functions to preserve the pairwise similarities defined by given class labels. However, these methods fail to explicitly explore the discriminative property of class labels during hash function learning. In addition, they usually discard the discrete constraints imposed on the to-be-learned binary codes, and compromise to solve a relaxed problem with quantization to obtain the approximate binary solution. Therefore, the binary codes generated by these methods are suboptimal and less discriminative to different classes. To overcome these drawbacks, we propose a novel cross-modal hashing method, termed discrete cross-modal hashing (DCH), which directly learns discriminative binary codes while retaining the discrete constraints. Specifically, DCH learns modality-specific hash functions for generating unified binary codes, and these binary codes are viewed as representative features for discriminative classification with class labels. An effective discrete optimization algorithm is developed for DCH to jointly learn the modality-specific hash function and the unified binary codes. Extensive experiments on three benchmark data sets highlight the superiority of DCH under various cross-modal scenarios and show its state-of-the-art performance.

358 citations

Journal ArticleDOI
TL;DR: This work proposes a simple yet effective unsupervised hashing framework, named Similarity-Adaptive Deep Hashing (SADH), which alternatingly proceeds over three training modules: deep hash model training, similarity graph updating and binary code optimization.
Abstract: Recent vision and learning studies show that learning compact hash codes can facilitate massive data processing with significantly reduced storage and computation. Particularly, learning deep hash functions has greatly improved the retrieval performance, typically under the semantic supervision. In contrast, current unsupervised deep hashing algorithms can hardly achieve satisfactory performance due to either the relaxed optimization or absence of similarity-sensitive objective. In this work, we propose a simple yet effective unsupervised hashing framework, named Similarity-Adaptive Deep Hashing (SADH), which alternatingly proceeds over three training modules: deep hash model training, similarity graph updating and binary code optimization. The key difference from the widely-used two-step hashing method is that the output representations of the learned deep model help update the similarity graph matrix, which is then used to improve the subsequent code optimization. In addition, for producing high-quality binary codes, we devise an effective discrete optimization algorithm which can directly handle the binary constraints with a general hashing loss. Extensive experiments validate the efficacy of SADH, which consistently outperforms the state-of-the-arts by large gaps.

343 citations

Journal ArticleDOI
TL;DR: A novel Binary Multi-View Clustering (BMVC) framework, which can dexterously manipulate multi-view image data and easily scale to large data, and is formulated by two key components: compact collaborative discrete representation learning and binary clustering structure learning, in a joint learning framework.
Abstract: Clustering is a long-standing important research problem, however, remains challenging when handling large-scale image data from diverse sources. In this paper, we present a novel Binary Multi-View Clustering (BMVC) framework, which can dexterously manipulate multi-view image data and easily scale to large data. To achieve this goal, we formulate BMVC by two key components: compact collaborative discrete representation learning and binary clustering structure learning, in a joint learning framework. Specifically, BMVC collaboratively encodes the multi-view image descriptors into a compact common binary code space by considering their complementary information; the collaborative binary representations are meanwhile clustered by a binary matrix factorization model, such that the cluster structures are optimized in the Hamming space by pure, extremely fast bit-operations. For efficiency, the code balance constraints are imposed on both binary data representations and cluster centroids. Finally, the resulting optimization problem is solved by an alternating optimization scheme with guaranteed fast convergence. Extensive experiments on four large-scale multi-view image datasets demonstrate that the proposed method enjoys the significant reduction in both computation and memory footprint, while observing superior (in most cases) or very competitive performance, in comparison with state-of-the-art clustering methods.

319 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings ArticleDOI
03 Apr 2017
TL;DR: This work strives to develop techniques based on neural networks to tackle the key problem in recommendation --- collaborative filtering --- on the basis of implicit feedback, and presents a general framework named NCF, short for Neural network-based Collaborative Filtering.
Abstract: In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation --- collaborative filtering --- on the basis of implicit feedback. Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering --- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items. By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.

4,419 citations

01 Jan 2006

3,012 citations