scispace - formally typeset
Search or ask a question
Author

Furui Bai

Bio: Furui Bai is an academic researcher from Hong Kong Polytechnic University. The author has contributed to research in topics: Computer science & Engineering. The author has an hindex of 1, co-authored 1 publications receiving 80 citations.

Papers
More filters
Proceedings ArticleDOI
16 Jun 2019
TL;DR: The 3rd NTIRE challenge on single-image super-resolution (restoration of rich details in a low-resolution image) is reviewed with a focus on proposed solutions and results and the state-of-the-art in real-world single image super- resolution.
Abstract: This paper reviewed the 3rd NTIRE challenge on single-image super-resolution (restoration of rich details in a low-resolution image) with a focus on proposed solutions and results. The challenge had 1 track, which was aimed at the real-world single image super-resolution problem with an unknown scaling factor. Participants were mapping low-resolution images captured by a DSLR camera with a shorter focal length to their high-resolution images captured at a longer focal length. With this challenge, we introduced a novel real-world super-resolution dataset (RealSR). The track had 403 registered participants, and 36 teams competed in the final testing phase. They gauge the state-of-the-art in real-world single image super-resolution.

118 citations

Journal ArticleDOI
20 Oct 2022
TL;DR: The proposed methods and benchmark establish the state-of-the-art for this low-level vision inverse problem, and generating realistic raw sensor readings can potentially benefit other tasks such as denoising and super-resolution.
Abstract: Cameras capture sensor RAW images and transform them into pleasant RGB images, suitable for the human eyes, using their integrated Image Signal Processor (ISP). Numerous low-level vision tasks operate in the RAW domain (e.g. image denoising, white balance) due to its linear relationship with the scene irradiance, wide-range of information at 12bits, and sensor designs. Despite this, RAW image datasets are scarce and more expensive to collect than the already large and public RGB datasets. This paper introduces the AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstruction. We aim to recover raw sensor images from the corresponding RGBs without metadata and, by doing this,"reverse"the ISP transformation. The proposed methods and benchmark establish the state-of-the-art for this low-level vision inverse problem, and generating realistic raw sensor readings can potentially benefit other tasks such as denoising and super-resolution.

10 citations

Journal ArticleDOI
17 Oct 2022
TL;DR: The methods and the results of AIM 2022 challenge on Instagram Filter Removal are introduced and the proposed solutions are ranked in terms of the PSNR value with respect to the original images.
Abstract: This paper introduces the methods and the results of AIM 2022 challenge on Instagram Filter Removal. Social media filters transform the images by consecutive non-linear operations, and the feature maps of the original content may be interpolated into a different domain. This reduces the overall performance of the recent deep learning strategies. The main goal of this challenge is to produce realistic and visually plausible images where the impact of the filters applied is mitigated while preserving the content. The proposed solutions are ranked in terms of the PSNR value with respect to the original images. There are two prior studies on this task as the baseline, and a total of 9 teams have competed in the final phase of the challenge. The comparison of qualitative results of the proposed solutions and the benchmark for the challenge are presented in this report.

8 citations

Journal ArticleDOI
07 Nov 2022
TL;DR: In this article , the authors developed an end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite.
Abstract: The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper.

4 citations


Cited by
More filters
Book ChapterDOI
23 Aug 2020
TL;DR: MIRNet as mentioned in this paper proposes a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting mult-scale features, (b) information exchange across the multiresolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention-based multiscale feature aggregation.
Abstract: With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography and medical imaging. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present an architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet.

357 citations

Proceedings ArticleDOI
16 Jun 2019
TL;DR: It is found that the NTIRE 2019 challenges push the state-of-the-art in video deblurring and super-resolution, reaching compelling performance on the newly proposed REDS dataset.
Abstract: This paper introduces a novel large dataset for video deblurring, video super-resolution and studies the state-of-the-art as emerged from the NTIRE 2019 video restoration challenges. The video deblurring and video super-resolution challenges are each the first challenge of its kind, with 4 competitions, hundreds of participants and tens of proposed solutions. Our newly collected REalistic and Diverse Scenes dataset (REDS) was employed by the challenges. In our study, we compare the solutions from the challenges to a set of representative methods from the literature and evaluate them on our proposed REDS dataset. We find that the NTIRE 2019 challenges push the state-of-the-art in video deblurring and super-resolution, reaching compelling performance on our newly proposed REDS dataset.

328 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: Li et al. as mentioned in this paper proposed a Laplacian pyramid based kernel prediction network (LP-KPN), which efficiently learns per-pixel kernels to recover the HR image, which achieved better visual quality with sharper edges and finer textures on real-world scenes.
Abstract: Most of the existing learning-based single image super-resolution (SISR) methods are trained and evaluated on simulated datasets, where the low-resolution (LR) images are generated by applying a simple and uniform degradation (i.e., bicubic downsampling) to their high-resolution (HR) counterparts. However, the degradations in real-world LR images are far more complicated. As a consequence, the SISR models trained on simulated data become less effective when applied to practical scenarios. In this paper, we build a real-world super-resolution (RealSR) dataset where paired LR-HR images on the same scene are captured by adjusting the focal length of a digital camera. An image registration algorithm is developed to progressively align the image pairs at different resolutions. Considering that the degradation kernels are naturally non-uniform in our dataset, we present a Laplacian pyramid based kernel prediction network (LP-KPN), which efficiently learns per-pixel kernels to recover the HR image. Our extensive experiments demonstrate that SISR models trained on our RealSR dataset deliver better visual quality with sharper edges and finer textures on real-world scenes than those trained on simulated datasets. Though our RealSR dataset is built by using only two cameras (Canon 5D3 and Nikon D810), the trained model generalizes well to other camera devices such as Sony a7II and mobile phones.

318 citations

Journal ArticleDOI
TL;DR: Deep convolutional networks–based super-resolution is a fast-growing field with numerous practical applications and this exposition extensively compare more than 30 state-of-the-art super-resolves.
Abstract: Deep convolutional networks–based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare more than 30 state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep learning–based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based, and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses, and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmarks have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems. Datasets and codes for evaluation are publicly available at https://github.com/saeed-anwar/SRsurvey.

162 citations

Journal ArticleDOI
TL;DR: In this paper, a deep Fourier channel attention network (DFCAN) was proposed to learn hierarchical representations of high-frequency information about diverse biological structures using multimodal structured illumination microscopy (SIM).
Abstract: Deep neural networks have enabled astonishing transformations from low-resolution (LR) to super-resolved images However, whether, and under what imaging conditions, such deep-learning models outperform super-resolution (SR) microscopy is poorly explored Here, using multimodality structured illumination microscopy (SIM), we first provide an extensive dataset of LR-SR image pairs and evaluate the deep-learning SR models in terms of structural complexity, signal-to-noise ratio and upscaling factor Second, we devise the deep Fourier channel attention network (DFCAN), which leverages the frequency content difference across distinct features to learn precise hierarchical representations of high-frequency information about diverse biological structures Third, we show that DFCAN's Fourier domain focalization enables robust reconstruction of SIM images under low signal-to-noise ratio conditions We demonstrate that DFCAN achieves comparable image quality to SIM over a tenfold longer duration in multicolor live-cell imaging experiments, which reveal the detailed structures of mitochondrial cristae and nucleoids and the interaction dynamics of organelles and cytoskeleton

132 citations