scispace - formally typeset
Search or ask a question
Author

Fusheng Pan

Bio: Fusheng Pan is an academic researcher from Chongqing University. The author has contributed to research in topics: Alloy & Microstructure. The author has an hindex of 54, co-authored 698 publications receiving 14420 citations. Previous affiliations of Fusheng Pan include Chinese Academy of Sciences & Center for Advanced Materials.


Papers
More filters
Journal ArticleDOI
TL;DR: In 2018 and 2019, significant progress has been achieved in high-performance cast and wrought magnesium and magnesium alloys, such as Mg ion batteries, hydrogen storage Mg materials, bio-magnesium alloys and functional magnesium materials as discussed by the authors.

744 citations

Journal ArticleDOI
TL;DR: Grain refinement of cast magnesium alloys, particularly in magnesium-aluminium (Mg-Al) based alloys has been an active research topic in the past two decades, because it has been considered as one of the most effective approaches to simultaneously increase the strength, ductility and formability as discussed by the authors.

388 citations

Journal ArticleDOI
TL;DR: More than 3000 papers on magnesium and magnesium alloys were published and indexed in SCI in 2020 alone as discussed by the authors, with the emerging research hot spots mainly on functional magnesium materials, such as Mg ion batteries, hydrogen storage Mg materials, structural-functional materials and bio-magnesium materials.

382 citations

Journal ArticleDOI
TL;DR: In this article, the effect of GNP nano-particle integration on tensile, compressive and hardness response of aluminum is investigated, and it is demonstrated that 0.3-wt% Graphene Nanoplatelets distributed homogeneously in the matrix aluminum act as an effective reinforcing filler to prevent deformation.

371 citations

Journal ArticleDOI
TL;DR: In this article, the research and development status of casting magnesium alloys including the commercial casting alloys and the new types casting alloy are reviewed, with more attention to microstructure and mechanical properties of modified-AZ91, AM60 and WE43 alloys with various additions.

361 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: A comprehensive and up-to-date review on the rapid progress achieved very recently on this subject can be found in this article, where key materials-science issues of general interest, including the initiation of shear localization starting from shear transformations, the temperature and velocity reached in the propagating or sliding band, the structural evolution inside the shear-band material, and the parameters that strongly influence shearbanding are discussed.
Abstract: Shear-banding is a ubiquitous plastic-deformation mode in materials. In metallic glasses, shear bands are particularly important as they play the decisive role in controlling plasticity and failure at room temperature. While there have been several reviews on the general mechanical properties of metallic glasses, a pressing need remains for an overview focused exclusively on shear bands, which have received tremendous attention in the past several years. This article attempts to provide a comprehensive and up-to-date review on the rapid progress achieved very recently on this subject. We describe the shear bands from the inside out, and treat key materials-science issues of general interest, including the initiation of shear localization starting from shear transformations, the temperature and velocity reached in the propagating or sliding band, the structural evolution inside the shear-band material, and the parameters that strongly influence shear-banding. Several new discoveries and concepts, such as stick-slip cold shear-banding and strength/plasticity enhancement at sub-micrometer sample sizes, will also be highlighted. The understanding built-up from these accounts will be used to explain the successful control of shear bands achieved so far in the laboratory. The review also identifies a number of key remaining questions to be answered, and presents an outlook for the field.

1,164 citations

Journal ArticleDOI
TL;DR: The present review tries to give a comprehensive and most up to date view to the field, with an emphasis on the currently most investigated anodic TiO2 nanotube arrays.
Abstract: In the present review we try to give a comprehensive and most up to date view to the field, with an emphasis on the currently most investigated anodic TiO2 nanotube arrays. We will first give an overview of different synthesis approaches to produce TiO2 nanotubes and TiO2 nanotube arrays, and then deal with physical and chemical properties of TiO2 nanotubes and techniques to modify them. Finally, we will provide an overview of the most explored and prospective applications of nanotubular TiO2.

984 citations

Journal ArticleDOI
TL;DR: This review focuses on the following topics: (i) the design criteria of biodegradable materials; (ii) alloy development strategy; (iii) in vitro performances of currently developed Mg-based alloys; and (iv) in vivo performances of presently developed M g-based implants, especially Mg -based alloy under clinical trials.

886 citations