scispace - formally typeset
Search or ask a question
Author

Fuxi Cai

Bio: Fuxi Cai is an academic researcher from University of Michigan. The author has contributed to research in topics: Memristor & Crossbar switch. The author has an hindex of 11, co-authored 21 publications receiving 1338 citations. Previous affiliations of Fuxi Cai include Queensland University of Technology & Applied Materials.

Papers
More filters
PatentDOI
TL;DR: The experimental implementation of sparse coding algorithms in a bio-inspired approach using a 32 × 32 crossbar array of analog memristors enables efficient implementation of pattern matching and lateral neuron inhibition and allows input data to be sparsely encoded using neuron activities and stored dictionary elements.
Abstract: Sparse representation of information performs powerful feature extraction on high-dimensional data and is of interest for applications in signal processing, machine vision, object recognition, and neurobiology Sparse coding is a mechanism by which biological neural systems can efficiently process complex sensory data while consuming very little power Sparse coding algorithms in a bio-inspired approach can be implemented in a crossbar array of memristors (resistive memory devices) This network enables efficient implementation of pattern matching and lateral neuron inhibition, allowing input data to be sparsely encoded using neuron activities and stored dictionary elements The reconstructed input can be obtained by performing a backward pass through the same crossbar matrix using the neuron activity vector as input Different dictionary sets can be trained and stored in the same system, depending on the nature of the input signals Using the sparse coding algorithm, natural image processing is performed based on a learned dictionary

484 citations

Journal ArticleDOI
01 Jul 2019
TL;DR: A programmable neuromorphic computing chip based on passive memristor crossbar arrays integrated with analogue and digital components and an on-chip processor enables the implementation of neuromorphic and machine learning algorithms.
Abstract: Memristors and memristor crossbar arrays have been widely studied for neuromorphic and other in-memory computing applications. To achieve optimal system performance, however, it is essential to integrate memristor crossbars with peripheral and control circuitry. Here, we report a fully functional, hybrid memristor chip in which a passive crossbar array is directly integrated with custom-designed circuits, including a full set of mixed-signal interface blocks and a digital processor for reprogrammable computing. The memristor crossbar array enables online learning and forward and backward vector-matrix operations, while the integrated interface and control circuitry allow mapping of different algorithms on chip. The system supports charge-domain operation to overcome the nonlinear I–V characteristics of memristor devices through pulse width modulation and custom analogue-to-digital converters. The integrated chip offers all the functions required for operational neuromorphic computing hardware. Accordingly, we demonstrate a perceptron network, sparse coding algorithm and principal component analysis with an integrated classification layer using the system. A programmable neuromorphic computing chip based on passive memristor crossbar arrays integrated with analogue and digital components and an on-chip processor enables the implementation of neuromorphic and machine learning algorithms.

460 citations

Journal ArticleDOI
Chao Du1, Fuxi Cai1, Mohammed A. Zidan1, Wen Ma1, Seung Hwan Lee1, Wei Lu1 
TL;DR: It is shown that the internal ionic dynamic processes of memristors allow the memristor-based reservoir to directly process information in the temporal domain, and it is demonstrated that even a small hardware system with only 88memristors can already be used for tasks, such as handwritten digit recognition.
Abstract: Reservoir computing systems utilize dynamic reservoirs having short-term memory to project features from the temporal inputs into a high-dimensional feature space. A readout function layer can then effectively analyze the projected features for tasks, such as classification and time-series analysis. The system can efficiently compute complex and temporal data with low-training cost, since only the readout function needs to be trained. Here we experimentally implement a reservoir computing system using a dynamic memristor array. We show that the internal ionic dynamic processes of memristors allow the memristor-based reservoir to directly process information in the temporal domain, and demonstrate that even a small hardware system with only 88 memristors can already be used for tasks, such as handwritten digit recognition. The system is also used to experimentally solve a second-order nonlinear task, and can successfully predict the expected output without knowing the form of the original dynamic transfer function. Reservoir computing facilitates the projection of temporal input signals onto a high-dimensional feature space via a dynamic system, known as the reservoir. Du et al. realise this concept using metal-oxide-based memristors with short-term memory to perform digit recognition tasks and solve non-linear problems.

426 citations

Journal ArticleDOI
John Moon1, Wen Ma1, Jong Hoon Shin1, Fuxi Cai1, Chao Du1, Seung Hwan Lee1, Wei Lu1 
01 Oct 2019
TL;DR: A reservoir computing hardware system based on dynamic tungsten oxide memristors that can efficiently process temporal data and can be used to perform time-series analysis, demonstrating isolated spoken-digit recognition with partial inputs and chaotic system forecasting.
Abstract: Time-series analysis including forecasting is essential in a range of fields from finance to engineering. However, long-term forecasting is difficult, particularly for cases where the underlying models and parameters are complex and unknown. Neural networks can effectively process features in temporal units and are attractive for such purposes. Reservoir computing, in particular, can offer efficient temporal processing of recurrent neural networks with a low training cost, and is thus well suited to time-series analysis and forecasting tasks. Here, we report a reservoir computing hardware system based on dynamic tungsten oxide (WOx) memristors that can efficiently process temporal data. The internal short-term memory effects of the WOx memristors allow the memristor-based reservoir to nonlinearly map temporal inputs into reservoir states, where the projected features can be readily processed by a linear readout function. We use the system to experimentally demonstrate two standard benchmarking tasks: isolated spoken-digit recognition with partial inputs, and chaotic system forecasting. A high classification accuracy of 99.2% is obtained for spoken-digit recognition, and autonomous chaotic time-series forecasting has been demonstrated over the long term. A reservoir computer system based on dynamic tungsten oxide memristors can be used to perform time-series analysis, demonstrating isolated spoken-digit recognition with partial inputs and chaotic system forecasting.

246 citations

Journal ArticleDOI
01 Jul 2020
TL;DR: A memristor-based annealing system that uses an analogue neuromorphic architecture based on a Hopfield neural network can solve non-deterministic polynomial-time (NP)-hard max-cut problems in an approach that is potentially more efficient than current quantum, optical and digital approaches.
Abstract: To tackle important combinatorial optimization problems, a variety of annealing-inspired computing accelerators, based on several different technology platforms, have been proposed, including quantum-, optical- and electronics-based approaches. However, to be of use in industrial applications, further improvements in speed and energy efficiency are necessary. Here, we report a memristor-based annealing system that uses an energy-efficient neuromorphic architecture based on a Hopfield neural network. Our analogue–digital computing approach creates an optimization solver in which massively parallel operations are performed in a dense crossbar array that can inject the needed computational noise through the analogue array and device errors, amplified or dampened by using a novel feedback algorithm. We experimentally show that the approach can solve non-deterministic polynomial-time (NP)-hard max-cut problems by harnessing the intrinsic hardware noise. We also use experimentally grounded simulations to explore scalability with problem size, which suggest that our memristor-based approach can offer a solution throughput over four orders of magnitude higher per power consumption relative to current quantum, optical and fully digital approaches. A memristor-based annealing system that uses an analogue neuromorphic architecture based on a Hopfield neural network can solve non-deterministic polynomial (NP)-hard max-cut problems in an approach that is potentially more efficient than current quantum, optical and digital approaches.

174 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 2018
TL;DR: The state of the art in memristor-based electronics is evaluated and the future development of such devices in on-chip memory, biologically inspired computing and general-purpose in-memory computing is explored.
Abstract: A memristor is a resistive device with an inherent memory. The theoretical concept of a memristor was connected to physically measured devices in 2008 and since then there has been rapid progress in the development of such devices, leading to a series of recent demonstrations of memristor-based neuromorphic hardware systems. Here, we evaluate the state of the art in memristor-based electronics and explore where the future of the field lies. We highlight three areas of potential technological impact: on-chip memory and storage, biologically inspired computing and general-purpose in-memory computing. We analyse the challenges, and possible solutions, associated with scaling the systems up for practical applications, and consider the benefits of scaling the devices down in terms of geometry and also in terms of obtaining fundamental control of the atomic-level dynamics. Finally, we discuss the ways we believe biology will continue to provide guiding principles for device innovation and system optimization in the field. This Perspective evaluates the state of the art in memristor-based electronics and explores the future development of such devices in on-chip memory, biologically inspired computing and general-purpose in-memory computing.

1,231 citations

Journal ArticleDOI
01 Jun 2018
TL;DR: This Review Article examines the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, theirresistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation.
Abstract: Modern computers are based on the von Neumann architecture in which computation and storage are physically separated: data are fetched from the memory unit, shuttled to the processing unit (where computation takes place) and then shuttled back to the memory unit to be stored. The rate at which data can be transferred between the processing unit and the memory unit represents a fundamental limitation of modern computers, known as the memory wall. In-memory computing is an approach that attempts to address this issue by designing systems that compute within the memory, thus eliminating the energy-intensive and time-consuming data movement that plagues current designs. Here we review the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, their resistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation. We examine the different digital, analogue, and stochastic computing schemes that have been proposed, and explore the microscopic physical mechanisms involved. Finally, we discuss the challenges in-memory computing faces, including the required scaling characteristics, in delivering next-generation computing. This Review Article examines the development of in-memory computing using resistive switching devices.

1,193 citations

Journal ArticleDOI
29 Jan 2020-Nature
TL;DR: The fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs and an effective hybrid-training method to adapt to device imperfections and improve the overall system performance are proposed.
Abstract: Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks1–4. However, convolutional neural networks (CNNs)—one of the most important models for image recognition5—have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices6–9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. A fully hardware-based memristor convolutional neural network using a hybrid training method achieves an energy efficiency more than two orders of magnitude greater than that of graphics-processing units.

1,033 citations

Journal ArticleDOI
TL;DR: An overview of recent advances in physical reservoir computing is provided by classifying them according to the type of the reservoir to expand its practical applications and develop next-generation machine learning systems.

959 citations

Journal ArticleDOI
TL;DR: The challenges in the integration and use in computation of large-scale memristive neural networks are discussed, both as accelerators for deep learning and as building blocks for spiking neural networks.
Abstract: With their working mechanisms based on ion migration, the switching dynamics and electrical behaviour of memristive devices resemble those of synapses and neurons, making these devices promising candidates for brain-inspired computing. Built into large-scale crossbar arrays to form neural networks, they perform efficient in-memory computing with massive parallelism by directly using physical laws. The dynamical interactions between artificial synapses and neurons equip the networks with both supervised and unsupervised learning capabilities. Moreover, their ability to interface with analogue signals from sensors without analogue/digital conversions reduces the processing time and energy overhead. Although numerous simulations have indicated the potential of these networks for brain-inspired computing, experimental implementation of large-scale memristive arrays is still in its infancy. This Review looks at the progress, challenges and possible solutions for efficient brain-inspired computation with memristive implementations, both as accelerators for deep learning and as building blocks for spiking neural networks.

948 citations