scispace - formally typeset
Search or ask a question
Author

Fuxin Lian

Bio: Fuxin Lian is an academic researcher from Hangzhou Normal University. The author has contributed to research in topics: Default mode network. The author has an hindex of 1, co-authored 1 publications receiving 2 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A meta-analytic review of fMRI rest and task studies showed that ASD subjects exhibit consistent hypofunction in anterior and posterior midline regions of the default-mode network (DMN) with decreased self-non-self differentiation as discussed by the authors.
Abstract: Autism spectrum disorder (ASD) is characterized by a fundamental change in self-awareness including seemingly paradoxical features like increased ego-centeredness and weakened self-referentiality. What is the neural basis of this so-called “self-paradox”? Conducting a meta-analytic review of fMRI rest and task studies, we show that ASD exhibits consistent hypofunction in anterior and posterior midline regions of the default-mode network (DMN) in both rest and task with decreased self–non-self differentiation. Relying on a multilayered nested hierarchical model of self, as recently established (Qin et al. 2020), we propose that ASD subjects cannot access the most upper layer of their self, the DMN-based mental self—they are locked-out of their own DMN and its mental self. This, in turn, results in strong weakening of their self-referentiality with decreases in both self-awareness and self–other distinction. Moreover, this blocks the extension of non-DMN cortical and subcortical regions at the lower layers of the physical self to the DMN-based upper layer of the mental self, including self–other distinction. The ASD subjects remain stuck and restricted to their intero- and exteroceptive selves as manifested in a relative increase in ego-centeredness (as compared to self-referentiality). This amounts to what we describe as “Hierarchical Model of Autistic Self” (HAS), which, characterizing the autistic self in hierarchical and spatiotemporal terms, aligns well with and extends current theories of ASD including predictive coding and weak central coherence.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , a conceptually different approach was proposed to understand physiologic function as emerging behavior from communications among distinct brain rhythms, and all brain rhythms coordinate as a network to generate states and facilitate functions.
Abstract: The current paradigm in brain research focuses on individual brain rhythms, their spatiotemporal organization, and specific pairwise interactions in association with physiological states, cognitive functions, and pathological conditions. Here we propose a conceptually different approach to understanding physiologic function as emerging behavior from communications among distinct brain rhythms. We hypothesize that all brain rhythms coordinate as a network to generate states and facilitate functions. We analyze healthy subjects during rest, exercise, and cognitive tasks and show that synchronous modulation in the micro-architecture of brain rhythms mediates their cross-communications. We discover that brain rhythms interact through an ensemble of coupling forms, universally observed across cortical areas, uniquely defining each physiological state. We demonstrate that a dynamic network regulates the collective behavior of brain rhythms and that network topology and links strength hierarchically reorganize with transitions across states, indicating that brain-rhythm interactions play an essential role in generating physiological states and cognition.

6 citations

Journal ArticleDOI
TL;DR: In this paper , a conceptually different approach was proposed to understand physiologic function as emerging behavior from communications among distinct brain rhythms, and all brain rhythms coordinate as a network to generate states and facilitate functions.
Abstract: The current paradigm in brain research focuses on individual brain rhythms, their spatiotemporal organization, and specific pairwise interactions in association with physiological states, cognitive functions, and pathological conditions. Here we propose a conceptually different approach to understanding physiologic function as emerging behavior from communications among distinct brain rhythms. We hypothesize that all brain rhythms coordinate as a network to generate states and facilitate functions. We analyze healthy subjects during rest, exercise, and cognitive tasks and show that synchronous modulation in the micro-architecture of brain rhythms mediates their cross-communications. We discover that brain rhythms interact through an ensemble of coupling forms, universally observed across cortical areas, uniquely defining each physiological state. We demonstrate that a dynamic network regulates the collective behavior of brain rhythms and that network topology and links strength hierarchically reorganize with transitions across states, indicating that brain-rhythm interactions play an essential role in generating physiological states and cognition.

6 citations

Journal ArticleDOI
TL;DR: In this article , a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity was performed, which revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network).
Abstract: Despite decades of massive neuroimaging research, the comprehensive characterization of short-range functional connectivity in autism spectrum disorder (ASD) remains a major challenge for scientific advances and clinical translation. From the theoretical point of view, it has been suggested a generalized local over-connectivity that would characterize ASD. This stance is known as the general local over-connectivity theory. However, there is little empirical evidence supporting such hypothesis, especially with regard to pediatric individuals with ASD (age [Formula: see text] 18 years old). To explore this issue, we performed a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity. Our analyses revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network) and in the bilateral paracentral lobule (a part of the sensorimotor network). We also performed a functional association analysis of the identified areas, whose dysfunction is clinically consistent with the well-known deficits affecting individuals with ASD. Importantly, we did not find relevant clusters of local hyper-connectivity, which is contrary to the hypothesis that ASD may be characterized by generalized local over-connectivity. If confirmed, our result will provide a valuable insight into the understanding of the complex ASD pathophysiology.

1 citations

Journal ArticleDOI
TL;DR: In this article, a review of EEG and fMRI studies in Major Depressive Disorder (MDD) was conducted, which revealed that different regions exhibit different rest-task relationships (normal rest-abnormal task, abnormal rest-normal task and abnormal rest abnormal task) in MDD.
Abstract: Major depressive disorder (MDD) is characterized by changes in both rest and task states as manifested in temporal dynamics (EEG) and spatial patterns (fMRI). Are rest and task changes related to each other? Extending the “Resting state hypothesis of depression” (RSHD) (Northoff et al., 2011), we, using multimodal imaging, take a tripartite approach: (i) we conduct a review of EEG studies in MDD combining both rest and task states; (ii) we present our own EEG data in MDD on brain dynamics, i.e., intrinsic neural timescales as measured by the autocorrelation window (ACW); and (iii) we review fMRI studies in MDD to probe whether different regions exhibit different rest-task modulation. Review of EEG data shows reduced rest-task change in MDD in different measures of temporal dynamics like peak frequency (and others). Notably, our own EEG data show decreased rest-task change as measured by ACW in frontal electrodes of MDD. The fMRI data reveal that different regions exhibit different rest-task relationships (normal rest-abnormal task, abnormal rest-normal task, abnormal rest-abnormal task) in MDD. Together, we demonstrate altered spatiotemporal dynamics of rest-task modulation in MDD; this further supports and extends the key role of the spontaneous activity in MDD as proposed by the RSHD.

1 citations