scispace - formally typeset
Search or ask a question
Author

Fuying Cui

Bio: Fuying Cui is an academic researcher from Fudan University. The author has contributed to research in topics: Drug carrier & Chitosan. The author has an hindex of 12, co-authored 15 publications receiving 888 citations.

Papers
More filters
Journal ArticleDOI
Lichen Yin1, Likun Fei1, Fuying Cui1, Cui Tang1, Chunhua Yin1 
TL;DR: Due to the cross-linked O-CMC network, in vitro muco-adhesive force and mechanical properties, including compression and tensile modulus, of the SPH-IPN were greatly improved when compared with the CSPH.

266 citations

Journal ArticleDOI
Feng Qian1, Fuying Cui1, Jieying Ding1, Cui Tang1, Chunhua Yin1 
TL;DR: These graft copolymer nanoparticles enhanced the absorption and improved the bioavailability of insulin via the gastrointestinal tract of normal male Sprague-Dawley (SD) strain rats to a greater extent than that of the phosphate buffer solution (PBS) of insulin.

127 citations

Journal ArticleDOI
Fuying Cui1, Feng Qian1, Ziming Zhao1, Lichen Yin1, Cui Tang1, Chunhua Yin1 
TL;DR: The pH-sensitive carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles (CCGN) would be a promising delivery carrier for protein drugs via the oral route and showed desirable tissue and blood compatibility.

122 citations

Journal ArticleDOI
TL;DR: Chitosan-coated nanoparticles were stable when pH value below 11, while poly(acrylic acid)-coated Nanoparticles and carbopol-coates were stable under physiological pH conditions, and they are promising for transmucosal drug delivery.

111 citations

Journal ArticleDOI
Lichen Yin1, Jieying Ding1, Likun Fei1, Miao He1, Fuying Cui1, Cui Tang1, Chunhua Yin1 
TL;DR: In this investigation, superporous hydrogels containing poly (acrylic acid-co-acrylamide)/O-carboxymethyl chitosan (O-CMC) full-interpenetrating polymer networks (SPH-IPNs) were evaluated for their potentials in effective insulin absorption via the oral route and showed pronounced properties that would be a promising peroral carrier for insulin and other peptide drugs.

72 citations


Cited by
More filters
Journal ArticleDOI
15 Apr 2008-Polymer
TL;DR: Recent progress in overcoming challenges with regards to effectively delivering hydrogels inside the body without implantation, prolonging the release kinetics of drugs fromhydrogels, and expanding the nature of drugs which can be delivered using hydrogel-based approaches is discussed.

3,140 citations

Journal ArticleDOI
Chunbai He1, Yiping Hu1, Lichen Yin1, Cui Tang1, Chunhua Yin1 
TL;DR: In vivo biodistribution suggested that NPs with slight negative charges and particle size of 150 nm were tended to accumulate in tumor more efficiently, and could serve as a guideline in the rational design of drug nanocarriers with maximized therapeutic efficacy and predictable in vivo properties.

2,069 citations

Journal ArticleDOI
TL;DR: The chemical modification affords a wide range of derivatives with modified properties for specific end use applications in diversified areas mainly of pharmaceutical, biomedical and biotechnological fields.
Abstract: Of late, the most bountiful natural biopolymer chitin and chitosan have become cynosure of all party because of an unusual combination of biological activities plus mechanical and physical properties. However applications of chitin are limited due to its inherent insoluble and intractable nature. Chitosan, alkaline hydrolytic derivative of chitin has better solubility profile, less crystallinity and is amenable to chemical modifications due to presence of functional groups as hydroxyl, acetamido, and amine. The chemical modification of chitosan is of interest because the modification would not change the fundamental skeleton of chitosan, would keep the original physicochemical and biochemical properties and finally would bring new or improved properties. In view of rapidly growing interest in chitosan its chemical aspects and chemical modification studies is reviewed. The several chemical modifications such as oligomerization, alkylation, acylation, quternization, hydroxyalkylation, carboxyalkylation, thiolation, sulfation, phosphorylation, enzymatic modifications and graft copolymerization along with many assorted modifications have been carried out. The chemical modification affords a wide range of derivatives with modified properties for specific end use applications in diversified areas mainly of pharmaceutical, biomedical and biotechnological fields. Assorted modifications including chitosan hybrids with sugars, cyclodextrin, dendrimers, and crown ethers have also emerged as interesting multifunctional macromolecules. The versatility in possible modifications and applications of chitosan derivatives presents a great challenge to scientific community and to industry. The successful acceptance of this challenge will change the role of chitosan from being a molecule in waiting to a lead player.

898 citations

Journal ArticleDOI
TL;DR: The main polysaccharides currently used in the biomedical and pharmaceutical domains are chitin and its derivative chitosan, hyaluronan, and alginates.
Abstract: This review concerns the applications of some polysaccharides in the domain of biomaterials and bioactive polymers. Natural polysaccharides from different sources have been studied for a long time, and their main properties are summarized in this paper; some of their derivatives obtained by chemical modification are also described. The main polysaccharides currently used in the biomedical and pharmaceutical domains are chitin and its derivative chitosan, hyaluronan and alginates. Alginates are well known for their property of forming a physical gel in the presence of divalent counterions (Ca, Ba, Sr) whereas carrageenans form a thermoreversible gel; these seaweed polysaccharides are mainly used to encapsulate different materials (cells, bacteria, fungi). Other promising systems are the electrostatic complexes formed when an anionic polysaccharide is mixed with a cationic polysaccharide (e.g. alginate/chitosan or hyaluronan/chitosan). An important development of the applications of polysaccharides can be predicted for the next few years in relation to their intrinsic properties such as biocompatibility and biodegradability in the human body for some of them; they are also renewable and have interesting physical properties (film-forming, gelling and thickening properties). In addition, they are easily processed in different forms such as beads, films, capsules and fibres. Copyright © 2007 Society of Chemical Industry

866 citations

Journal ArticleDOI
TL;DR: Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review.
Abstract: The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.

771 citations