scispace - formally typeset
Search or ask a question
Author

G. A. Mansoori

Bio: G. A. Mansoori is an academic researcher from University of Illinois at Chicago. The author has contributed to research in topics: Equation of state & Asphaltene. The author has an hindex of 18, co-authored 55 publications receiving 3258 citations. Previous affiliations of G. A. Mansoori include University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an equation of state is proposed for the mixture of hard spheres based on an averaging process over the two results of the solution of the Percus-Yevick integral equation.
Abstract: An equation of state is proposed for the mixture of hard spheres based on an averaging process over the two results of the solution of the Percus–Yevick integral equation for the mixture of hard spheres. Compressibility and other equilibrium properties of the binary mixtures of hard spheres are calculated and they are compared with the related machine‐calculated (Monte Carlo and molecular dynamics) data. The comparison shows excellent agreement between the proposed equation of state and the machine‐calculated data.

1,894 citations

Journal ArticleDOI
TL;DR: In this paper, a variational technique based on two different inequalities for the Helmholtz free energies is used to calculate the equilibrium thermodynamic properties of simple fluids, and a system with hard-sphere potential function is used as the reference system.
Abstract: A variational technique which is based on two different inequalities for the Helmholtz free energies is used to calculate the equilibrium thermodynamic properties of simple fluids. A system with hard‐sphere potential function is used as the reference system. Helmholtz free energy of the original system is calculated by variation around the Helmholtz free energy of the reference system, and the other thermodynamic properties are calculated from free energy. By choosing a hard‐sphere reference system, it is possible to calculate the equilibrium thermodynamic properties of fluids from very low densities to densities close to solid, and from high temperatures in the gas phase to low temperatures in the liquid phase, in the ranges where experimental and machine‐calculated data are available. It is shown that the present variational technique is a better approach to the prediction of the equilibrium thermodynamic properties of liquids and vapor–liquid phase transition than any other approach so far developed. W...

222 citations

MonographDOI
01 Jun 1983

183 citations

Journal ArticleDOI
TL;DR: In this paper, it is demonstrated that one may identify up to seven distinct phase transition points due to separations of heavy organics (saturates, resins and asphaltenes) from petroleum fluids.

160 citations

Journal ArticleDOI
TL;DR: A number of procedures to identify and measure the precipitates that result from petroleum fluids are presented in this article, including those in the categories of asphaltenes, resins, saturates (paraffin/wax), aromatics, inorganic minerals and diamondoids.

149 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: High entropy alloys (HEAs) are barely 12 years old as discussed by the authors, and the field has stimulated new ideas and inspired the exploration of the vast composition space offered by multi-principal element alloys.

4,693 citations

Journal ArticleDOI
TL;DR: In this paper, the Fourier transform of the pair correlation function is used to calculate the structure factor of a reference system in which the intermolecular forces are entirely repulsive and identical to the repulsive forces in a Lennard-Jones fluid.
Abstract: The different roles the attractive and repulsive forces play in forming the equilibrium structure of a Lennard‐Jones liquid are discussed. It is found that the effects of these forces are most easily separated by considering the structure factor (or equivalently, the Fourier transform of the pair‐correlation function) rather than the pair‐correlation function itself. At intermediate and large wave vectors, the repulsive forces dominate the quantitative behavior of the liquid structure factor. The attractions are manifested primarily in the small wave vector part of the structure factor; but this effect decreases as the density increases and is almost negligible at reduced densities higher than 0.65. These conclusions are established by considering the structure factor of a hypothetical reference system in which the intermolecular forces are entirely repulsive and identical to the repulsive forces in a Lennard‐Jones fluid. This reference system structure factor is calculated with the aid of a simple but accurate approximation described herein. The conclusions lead to a very simple prescription for calculating the radial distribution function of dense liquids which is more accurate than that obtained by any previously reported theory. The thermodynamic ramifications of the conclusions are presented in the form of calculations of the free energy, the internal energy (from the energy equation), and the pressure (from the virial equation). The implications of our conclusions to perturbation theories for liquids and to the interpretation of x‐ray scattering experiments are discussed.

4,462 citations

Journal ArticleDOI
TL;DR: In this paper, a modified SAFT equation of state is developed by applying the perturbation theory of Barker and Henderson to a hard-chain reference fluid, which is applicable to mixtures of small spherical molecules such as gases, nonspherical solvents, and chainlike polymers.
Abstract: A modified SAFT equation of state is developed by applying the perturbation theory of Barker and Henderson to a hard-chain reference fluid. With conventional one-fluid mixing rules, the equation of state is applicable to mixtures of small spherical molecules such as gases, nonspherical solvents, and chainlike polymers. The three pure-component parameters required for nonassociating molecules were identified for 78 substances by correlating vapor pressures and liquid volumes. The equation of state gives good fits to these properties and agrees well with caloric properties. When applied to vapor−liquid equilibria of mixtures, the equation of state shows substantial predictive capabilities and good precision for correlating mixtures. Comparisons to the SAFT version of Huang and Radosz reveal a clear improvement of the proposed model. A brief comparison with the Peng−Robinson model is also given for vapor−liquid equilibria of binary systems, confirming the good performance of the suggested equation of state. ...

2,739 citations